Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Sci Rep ; 13(1): 20021, 2023 11 16.
Article En | MEDLINE | ID: mdl-37973884

The study aimed at investigating the phytochemical composition, antioxidant and antibacterial activities of essential oils (EOs) of Origanum grossii and Thymus pallidus. The selection of these plants for the study was driven by a comprehensive survey conducted in the Ribat Elkheir region of Morocco, where these plants are widely utilized. The results reflect the valorization of these plants based on the findings of the regional survey. The GC-MS phytochemical analysis revealed that the main constituents of the essential oil were carvacrol and thymol for O. grossii and T. pallidus respectively. Quantitative assays demonstrated that O. grossii exhibited higher levels of polyphenols (0.136 mg AGE/mg EO) and flavonoids (0.207 mg QE/mg EO) compared to T. pallidus. The DPPH assay indicated that O. grossii EOs possessed approximately twice the antiradical activity of T. pallidus, with IC50 values of approximately 0.073 mg/mL and 0.131 mg/mL, respectively. The antibacterial activity tests showed that both essential oils exhibited significant inhibition zones ranging from 26 to 42 mm against all tested bacterial strains. The MIC values varied among the bacteria, generally falling within the range of 0.31 to 2.44 µg/mL, demonstrating the potency of the EOs to serve as antibacterial. Molecular docking revealed that O. grossii and T. pallidus essential oils interact with antibacterial and antioxidant proteins (1AJ6 and 6QME). Key compounds in O. grossii include p-cymene, eucalyptol, and carvacrol, while T. pallidus contains potent chemicals like p-cymene, ɤ-maaliene, valencene, α-terpinene, caryophyllene, himachalene, and thymol. Notably, the most potent chemicals in Origanum grossii are p-cymene, eucalyptol, and carvacrol, while the most potent chemicals in Thymus pallidus are p-cymene, α-terpinene, and thymol. These findings suggest that these plant EOs could be used to develop new natural products with antibacterial and antioxidant activity.


Oils, Volatile , Origanum , Thymus Plant , Oils, Volatile/chemistry , Thymol/chemistry , Origanum/chemistry , Eucalyptol , Antioxidants/pharmacology , Molecular Docking Simulation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Phytochemicals/pharmacology , Thymus Plant/chemistry
2.
Cell Microbiol ; 5(3): 155-64, 2003 Mar.
Article En | MEDLINE | ID: mdl-12614459

Epsilon toxin is produced by Clostridium perfringens types B and D which are responsible for fatal intestinal diseases in animals. The main biological activity of epsilon toxin is the production of oedema in various organs. We have previously found that epsilon toxin forms a large membrane complex in MDCK cells which is not internalized into cell, and induces cell volume enlargement and loss of cell viability (Petit, L., Gibert, M., Gillet, D., Laurent-Winter, C., Boquet, P., Popoff, M. R. (1997) J Bacteriol 179, 6480-6487). Here, we show that epsilon toxin is very potent to decrease the trans-epithelial electrical resistance of polarized MDCK cells grown on filters without altering the organization of the junctional complexes. The dose-dependent decrease in trans-epithelial electrical resistance, more marked when the toxin was applied to the apical side than to the basal side of MDCK cells, was associated with a moderate increase of the paracellular permeability to low-molecular-weight compounds but not to macromolecules. Epsilon toxin probably acts by forming large membrane pores which permit the flux of ions and other molecules such as the entry of propidium iodide and finally to the loss of cell viability.


Bacterial Toxins/toxicity , Epithelium/drug effects , Actins/metabolism , Animals , Bacterial Toxins/metabolism , Bacterial Toxins/pharmacology , Cell Count , Cell Cycle/drug effects , Cell Line , Cell Membrane Permeability/drug effects , Cell Polarity , Cell Survival/drug effects , Dogs , Epithelium/metabolism , Intercellular Junctions/metabolism , Membrane Proteins/metabolism , Propidium/pharmacology
...