Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 257: 119290, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38823612

RESUMEN

Rampant use of fertilizers and pesticides for boosting agricultural crop productivity has proven detrimental impact on land, water, and air quality globally. Although fertilizers and pesticides ensure greater food security, their unscientific management negatively impacts soil fertility, structure of soil microbiome and ultimately human health and hygiene. Pesticides exert varying impacts on soil properties and microbial community functions, contingent on factors such as their chemical structure, mode of action, toxicity, and dose-response characteristics. The diversity of bacterial responses to different pesticides presents a valuable opportunity for pesticide remediation. In this context, OMICS technologies are currently under development, and notable advancements in gene editing, including CRISPR technologies, have facilitated bacterial engineering, opening promising avenues for reducing toxicity and enhancing biological remediation. This paper provides a holistic overview of pesticide dynamics, with a specific focus on organophosphate, organochlorine, and pyrethroids. It covers their occurrence, activity, and potential mitigation strategies, with an emphasis on the microbial degradation route. Subsequently, the pesticide degradation pathways, associated genes and regulatory mechanisms, associated OMICS approaches in soil microbes with a special emphasis on CRISPR/Cas9 are also being discussed. Here, we analyze key environmental factors that significantly impact pesticide degradation mechanisms and underscore the urgency of developing alternative strategies to diminish our reliance on synthetic chemicals.


Asunto(s)
Biodegradación Ambiental , Plaguicidas , Microbiología del Suelo , Plaguicidas/toxicidad , Plaguicidas/metabolismo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Bacterias/metabolismo , Bacterias/genética , Bacterias/efectos de los fármacos
2.
Bioresour Technol ; 387: 129632, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37562491

RESUMEN

Pine wastes, including pine needles, cones, and wood, are abundantly produced as an agroforestry by-product globally and have shown tremendous potential for biochar production. Various thermochemical conversion technologies have exhibited promising results in converting pine wastes to biochar, displaying impressive performance. Hence, this review paper aims to investigate the possibilities and recent technological advancements for synthesizing biochar from pine waste. Furthermore, it explores techniques for enhancing the properties of biochar and its integrated applications in various fields, such as soil and water remediation, carbon sequestration, battery capacitor synthesis, and bio-coal production. Finally, the paper sheds light on the limitations of current strategies, emphasizing the need for further research and study to address the challenges in pine waste-based biochar synthesis. By promoting sustainable and effective utilization of pine wastes, this review contributes to environmental conservation and resource management.


Asunto(s)
Carbón Orgánico , Pinus , Carbón Orgánico/química , Suelo/química , Madera
3.
Environ Sci Pollut Res Int ; 30(10): 25148-25169, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34825334

RESUMEN

The paper provides an overview of biocosmetics, which has tremendous potential for growth and is attracting huge business opportunities. It emphasizes the immediate need to replace conventional fossil-based ingredients in cosmetics with natural, safe, and effective ingredients. It assembles recent technologies viable in the production/extraction of the bioactive ingredient, product development, and formulation processes, its rapid and smooth delivery to the target site, and fosters bio-based cosmetic packaging. It further explores industries that can be a trailblazer in supplying raw material for extraction of bio-based ingredients for cosmetics, creating biodegradable packaging, or weaving innovation in fashion clothing. Lastly, the paper discusses what it takes to become the first generation of a circular economy and supports the implementation of strict regulatory guidelines for any cosmetic sold globally.


Asunto(s)
Cosméticos , Tecnología , Predicción
4.
Bioresour Technol ; 364: 128076, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36216286

RESUMEN

Agricultural waste biomass has shown great potential to deliver green energy produced by biochemical and thermochemical conversion processes to mitigate future energy crises. Biohydrogen has become more interested in carbon-free and high-energy dense fuels among different biofuels. However, it is challenging to develop models based on experience or theory for precise predictions due to the complexity of biohydrogen production systems and the limitations of human perception. Recent advancements in machine learning (ML) may open up new possibilities. For this reason, this critical study offers a thorough understanding of ML's use in biohydrogen production. The most recent developments in ML-assisted biohydrogen technologies, including biochemical and thermochemical processes, are examined in depth. This review paper also discusses the prediction of biohydrogen production from agricultural waste. Finally, the techno-economic and scientific obstacles to ML application in agriculture waste biomass-based biohydrogen production are summarized.

5.
Artículo en Inglés | MEDLINE | ID: mdl-36168008

RESUMEN

Population growth, industrialization, and the extensive use of chemicals in daily life have all contributed to an increase in waste generation and an intensified release of organic pollutants into the aquatic environment. To ensure the quality of water (including natural resources), the removal of these pollutants from wastewater has become a challenging task for scientific community. Conventional physical, chemical, and biological treatment methods are commonly used in combinations and are not very effective. Recently, carbon nanotubes (CNTs) emerged as the most reliable and adaptable choice for efficient water treatment due to their extraordinary material properties appearing as a single-step solution for water treatment. High surface area, exceptional porosities, hollow and layered structures, and ease of chemical activation and functionalization are some properties which makes it excellent adsorption material. Hence, this review paper discusses the recent advances in the synthesis, purification, and functionalization of CNTs for water and wastewater treatment. In addition, this study also also provides a quick overview of CNTs-based advance technologies employed in water treatment and carefully assesses the benefits versus risks during large-scale water treatment. Furthermore, it concludes that identified risks to the environment and human health cannot be easily ignored and strict regulatory requirements are a must for producing low-cost innoxious CNTs.

6.
Microbiol Insights ; 13: 1178636120945300, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32843840

RESUMEN

The transition from acetate production by a microorganism in its early growth phase to acetate re-uptake in its late growth phase has been termed acetate switch. It has been observed in several heterotrophic prokaryotes, but not in an autotroph. Furthermore, all reports hitherto have involved the tricarboxylic acid cycle. This study reports the first observation of acetate switch in a methanogenic autotroph Methanococcus maripaludis S2, which uses the Wolfe cycle for its anaerobic respiration. When grown in minimal medium with carbon dioxide as the sole carbon source, and either ammonium or dinitrogen as the sole nitrogen source, M. maripaludis S2 dissimilated acetate in the early growth phase and assimilated it back in the late growth phase. The acetate switch was more pronounced in the dinitrogen-grown cultures. We postulate that the acetate dissimilation in M. maripaludis S2 may serve as a metabolic outlet for the carbon overflow in the early growth phase, and the assimilation in the late growth phase may be due to the scarcity of the carbon source. Based on the primary and secondary protein structures, we propose that MMP0253 may function as the adenosine diphosphate (ADP)-forming acetyl-CoA synthetase to catalyse acetate formation from acetyl-CoA. To verify this, we produced MMP0253 via the ligation-independent cloning technique in Escherichia coli strain Rosetta (DE3) using pNIC28-Bsa4 as the vector. The recombinant protein showed catalytic activity, when added into a mixture of acetyl-CoA, ADP, and inorganic phosphate (Pi). The concentration profile of acetate, together with the enzymatic activity of MMP0253, shows that M. maripaludis S2 can produce acetate and exhibit an acetate switch.

7.
Microb Cell Fact ; 15(1): 107, 2016 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-27286964

RESUMEN

Methanococcus maripaludis is a rapidly growing, fully sequenced, genetically tractable model organism among hydrogenotrophic methanogens. It has the ability to convert CO2 and H2 into a useful cleaner energy fuel (CH4). In fact, this conversion enhances in the presence of free nitrogen as the sole nitrogen source due to prolonged cell growth. Given the global importance of GHG emissions and climate change, diazotrophy can be attractive for carbon capture and utilization applications from appropriately treated flue gases, where surplus hydrogen is available from renewable electricity sources. In addition, M. maripaludis can be engineered to produce other useful products such as terpenoids, hydrogen, methanol, etc. M. maripaludis with its unique abilities has the potential to be a workhorse like Escherichia coli and S. cerevisiae for fundamental and experimental biotechnology studies. More than 100 experimental studies have explored different specific aspects of the biochemistry and genetics of CO2 and N2 fixation by M. maripaludis. Its genome-scale metabolic model (iMM518) also exists to study genetic perturbations and complex biological interactions. However, a comprehensive review describing its cell structure, metabolic processes, and methanogenesis is still lacking in the literature. This review fills this crucial gap. Specifically, it integrates distributed information from the literature to provide a complete and detailed view for metabolic processes such as acetyl-CoA synthesis, pyruvate synthesis, glycolysis/gluconeogenesis, reductive tricarboxylic acid (RTCA) cycle, non-oxidative pentose phosphate pathway (NOPPP), nitrogen metabolism, amino acid metabolism, and nucleotide biosynthesis. It discusses energy production via methanogenesis and its relation to metabolism. Furthermore, it reviews taxonomy, cell structure, culture/storage conditions, molecular biology tools, genome-scale models, and potential industrial and environmental applications. Through the discussion, it develops new insights and hypotheses from experimental and modeling observations, and identifies opportunities for further research and applications.


Asunto(s)
Methanococcus/metabolismo , Acetilcoenzima A/metabolismo , Proteínas Arqueales/metabolismo , Dióxido de Carbono/metabolismo , Metabolismo Energético , Glucólisis , Hidrogenasas/metabolismo , Metano/metabolismo , Methanococcus/crecimiento & desarrollo , Modelos Biológicos , Nitrógeno/metabolismo
8.
Microb Cell Fact ; 14: 146, 2015 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-26376868

RESUMEN

BACKGROUND: The rapidly growing mesophilic methanogen Methanococcus maripaludis S2 has a unique ability to consume both CO2 and N2, the main components of a flue gas, and produce methane with H2 as the electron donor. The existing literature lacks experimental measurements of CO2 and H2 uptake rates and CH4 production rates on M. maripaludis. Furthermore, it lacks estimates of maintenance energies for use with genome-scale models. In this paper, we performed batch culture experiments on M. maripaludis S2 using CO2 as the sole carbon substrate to quantify three key extracellular fluxes (CO2, H2, and CH4) along with specific growth rates. For precise computation of these fluxes from experimental measurements, we developed a systematic process simulation approach. Then, using an existing genome-scale model, we proposed an optimization procedure to estimate maintenance energy parameters: growth associated maintenance (GAM) and non-growth associated maintenance (NGAM). RESULTS: The measured extracellular fluxes for M. maripaludis showed excellent agreement with in silico predictions from a validated genome-scale model (iMM518) for NGAM = 7.836 mmol/gDCW/h and GAM = 27.14 mmol/gDCW. M. maripaludis achieved a CO2 to CH4 conversion yield of 70-95 % and a growth yield of 3.549 ± 0.149 g DCW/mol CH4 during the exponential phase. The ATP gain of 0.35 molATP/molCH4 for M. maripaludis, computed using NGAM, is in the acceptable range of 0.3-0.7 mol ATP/molCH4 reported for methanogens. Interestingly, the uptake distribution of amino acids, quantified using iMM518, confirmed alanine to be the most preferred amino acids for growth and methanogenesis. CONCLUSIONS: This is the first study to report experimental gas consumption and production rates for the growth of M. maripaludis on CO2 and H2 in minimal media. A systematic process simulation and optimization procedure was successfully developed to precisely quantify extracellular fluxes along with cell growth and maintenance energy parameters. Our growth yields, ATP gain, and energy parameters fall within acceptable ranges known in the literature for hydrogenotrophic methanogens.


Asunto(s)
Dióxido de Carbono/metabolismo , Methanococcus/metabolismo , Adenosina Trifosfato/metabolismo , Técnicas de Cultivo Celular por Lotes , Metabolismo Energético , Hidrógeno/metabolismo , Metano/metabolismo , Methanococcus/crecimiento & desarrollo
9.
Mol Biosyst ; 10(5): 1043-54, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24553424

RESUMEN

Methane is a major energy source for heating and electricity. Its production by methanogenic bacteria is widely known in nature. M. maripaludis S2 is a fully sequenced hydrogenotrophic methanogen and an excellent laboratory strain with robust genetic tools. However, a quantitative systems biology model to complement these tools is absent in the literature. To understand and enhance its methanogenesis from CO2, this work presents the first constraint-based genome-scale metabolic model (iMM518). It comprises 570 reactions, 556 distinct metabolites, and 518 genes along with gene-protein-reaction (GPR) associations, and covers 30% of open reading frames (ORFs). The model was validated using biomass growth data and experimental phenotypic studies from the literature. Its comparison with the in silico models of Methanosarcina barkeri, Methanosarcina acetivorans, and Sulfolobus solfataricus P2 shows M. maripaludis S2 to be a better organism for producing methane. Using the model, genes essential for growth were identified, and the efficacies of alternative carbon, hydrogen and nitrogen sources were studied. The model can predict the effects of reengineering M. maripaludis S2 to guide or expedite experimental efforts.


Asunto(s)
Dióxido de Carbono/metabolismo , Genoma Arqueal/genética , Metano/metabolismo , Methanococcus/genética , Methanococcus/metabolismo , Modelos Biológicos , Aminoácidos/metabolismo , Carbono/metabolismo , Ciclo del Carbono/efectos de los fármacos , Ciclo del Carbono/genética , Simulación por Computador , Medios de Cultivo , Formiatos/metabolismo , Técnicas de Inactivación de Genes , Hidrógeno/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Methanococcus/efectos de los fármacos , Methanococcus/crecimiento & desarrollo , Nitrógeno/farmacología , Sistemas de Lectura Abierta/genética , Reproducibilidad de los Resultados , Especificidad por Sustrato/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA