Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 15904, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36151261

RESUMEN

Knowledge gaps regarding the potential role of pesticides in the loss of agricultural biodiversity worldwide and mixture-related issues hamper proper risk assessment of unintentional impacts of pesticides, rendering essential the monitoring of wildlife exposure to these compounds. Free-ranging mammal exposure to legacy (Banned and Restricted: BRPs) and currently used (CUPs) pesticides was investigated, testing the hypotheses of: (1) a background bioaccumulation for BRPs whereas a "hot-spot" pattern for CUPs, (2) different contamination profiles between carnivores and granivores/omnivores, and (3) the role of non-treated areas as refuges towards exposure to CUPs. Apodemus mice (omnivore) and Crocidura shrews (insectivore) were sampled over two French agricultural landscapes (n = 93). The concentrations of 140 parent chemicals and metabolites were screened in hair samples. A total of 112 compounds were detected, showing small mammal exposure to fungicides, herbicides and insecticides with 32 to 65 residues detected per individual (13-26 BRPs and 18-41 CUPs). Detection frequencies exceeded 75% of individuals for 13 BRPs and 25 CUPs. Concentrations above 10 ng/g were quantified for 7 BRPs and 29 CUPs (in 46% and 72% of individuals, respectively), and above 100 ng/g for 10 CUPs (in 22% of individuals). Contamination (number of compounds or concentrations) was overall higher in shrews than rodents and higher in animals captured in hedgerows and cereal crops than in grasslands, but did not differ significantly between conventional and organic farming. A general, ubiquitous contamination by legacy and current pesticides was shown, raising issues about exposure pathways and impacts on ecosystems. We propose a concept referred to as "biowidening", depicting an increase of compound diversity at higher trophic levels. This work suggests that wildlife exposure to pesticide mixtures is a rule rather than an exception, highlighting the need for consideration of the exposome concept and questioning appropriateness of current risk assessment and mitigation processes.


Asunto(s)
Fungicidas Industriales , Herbicidas , Insecticidas , Plaguicidas , Animales , Ecosistema , Monitoreo del Ambiente , Fungicidas Industriales/análisis , Insecticidas/análisis , Ratones , Plaguicidas/química , Musarañas
2.
Sci Rep ; 11(1): 15817, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34349189

RESUMEN

An increasing number of studies have found that the implementation of feeding sites for wildlife-related tourism can affect animal health, behaviour and reproduction. Feeding sites can favour high densities, home range overlap, greater sedentary behaviour and increased interspecific contacts, all of which might promote parasite transmission. In the Yunnan snub-nosed monkey (Rhinopithecus bieti), human interventions via provisioning monkeys at specific feeding sites have led to the sub-structuring of a group into genetically differentiated sub-groups. The fed subgroup is located near human hamlets and interacts with domesticated animals. Using high-throughput sequencing, we investigated Entamoeba species diversity in a local host assemblage strongly influenced by provisioning for wildlife-related tourism. We identified 13 Entamoeba species or lineages in faeces of Yunnan snub-nosed monkeys, humans and domesticated animals (including pigs, cattle, and domestic chicken). In Yunnan snub-nosed monkeys, Entamoeba prevalence and OTU richness were higher in the fed than in the wild subgroup. Entamoeba polecki was found in monkeys, pigs and humans, suggesting that this parasite might circulates between the wild and domestic components of this local social-ecological system. The highest proportion of faeces positive for Entamoeba in monkeys geographically coincided with the presence of livestock and humans. These elements suggest that feeding sites might indirectly play a role on parasite transmission in the Yunnan snub-nosed monkey. The implementation of such sites should carefully consider the risk of creating hotspots of disease transmission, which should be prevented by maintaining a buffer zone between monkeys and livestock/humans. Regular screenings for pathogens in fed subgroup are necessary to monitor transmission risk in order to balance the economic development of human communities dependent on wildlife-related tourism, and the conservation of the endangered Yunnan snub-nosed monkey.


Asunto(s)
Animales Salvajes/parasitología , Colobinae/parasitología , Ecosistema , Entamoeba/aislamiento & purificación , Entamebiasis/transmisión , Conducta Alimentaria , Turismo , Animales , Entamoeba/clasificación , Entamoeba/genética , Entamebiasis/parasitología , Ambiente , Filogenia
3.
Sci Rep ; 10(1): 9506, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32528097

RESUMEN

Understanding the driving forces that control vole population dynamics requires identifying bacterial parasites hosted by the voles and describing their dynamics at the community level. To this end, we used high-throughput DNA sequencing to identify bacterial parasites in cyclic populations of montane water voles that exhibited a population outbreak and decline in 2014-2018. An unexpectedly large number of 155 Operational Taxonomic Units (OTUs) representing at least 13 genera in 11 families was detected. Individual bacterial richness was higher during declines, and vole body condition was lower. Richness as estimated by Chao2 at the local population scale did not exhibit clear seasonal or cycle phase-related patterns, but at the vole meta-population scale, exhibited seasonal and phase-related patterns. Moreover, bacterial OTUs that were detected in the low density phase were geographically widespread and detected earlier in the outbreak; some were associated with each other. Our results demonstrate the complexity of bacterial community patterns with regard to host density variations, and indicate that investigations about how parasites interact with host populations must be conducted at several temporal and spatial scales: multiple times per year over multiple years, and at both local and long-distance dispersal scales for the host(s) under consideration.


Asunto(s)
Arvicolinae/microbiología , Bacterias/aislamiento & purificación , Biodiversidad , Análisis Espacio-Temporal , Animales , Bacterias/clasificación , Dinámica Poblacional
4.
PLoS One ; 12(2): e0170534, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28199337

RESUMEN

Because they can form seasonal mixed-species groups during mating and maternal care, bats are exciting models for studying interspecific hybridization. Myotis myotis and M. blythii are genetically close and morphologically almost identical, but they differ in some aspects of their ecology and life-history traits. When they occur in sympatry, they often form large mixed maternity colonies, in which their relative abundance can vary across time due to a shift in the timing of parturition. For the first time, we used non-invasive genetic methods to assess the hybridization rate and colony composition in a maternity colony of M. myotis and M. blythii located in the French Alps. Bat guano was collected on five sampling dates spread across the roost occupancy period and was analysed for individual genotype. We investigated whether the presence of hybrids followed the pattern of one of the parental species or if it was intermediate. We identified 140 M. myotis, 12 M. blythii and 13 hybrids among 250 samples. Parental species appeared as genetically well-differentiated clusters, with an asymmetrical introgression towards M. blythii. By studying colony parameters (effective size, sex ratio and proportion of the three bat types) across the sampling dates, we found that the abundances of hybrid and M. blythii individuals were positively correlated. Our study provides a promising non-invasive method to study hybridization in bats and raises questions about the taxonomic status of the two Myotis species. We discuss the contribution of this study to the knowledge of hybrid ecology, and we make recommendations for possible future research to better understand the ecology and behaviour of hybrid individuals.


Asunto(s)
Quimera/genética , Quirópteros/genética , Animales , Femenino , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...