Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Diagn Microbiol Infect Dis ; 110(1): 116303, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38838460

This study evaluated the diagnostic and analytical performances of the Access anti-HBc Total assay on the DxI 9000 Access Immunoassay System (Beckman Coulter Inc.). The multicenter study involved both prospective and retrospective sample collection from non-selected blood donors, hospitalized patients, or presumed anti-HBc Total positive individuals. Fresh/previously-frozen samples were tested with the Access and comparator assays to determine concordance; discrepant samples were tested with a second CE-marked assay. Among the 5983 non-selected fresh blood donor samples deemed anti-HBc Total negative, clinical specificity of the Access assay was 99.58% (95%CI: 99.38-99.72%). Clinical specificity was 99.27% (97.37-99.80%) among 273 anti-HBc Total negative hospitalized patient samples. Clinical sensitivity on 450 anti-HBc Total positive samples was 99.78% (98.75-99.96%). Evaluation in seroconversion panels revealed an average 1.4-day earlier detection versus a comparator assay. The Access assay demonstrated excellent clinical and analytical performances comparable to existing CE-marked anti-HBc Total assays. NCT04904835.

2.
Pract Lab Med ; 39: e00390, 2024 Mar.
Article En | MEDLINE | ID: mdl-38715659

Introduction: This study evaluated the clinical and analytical performances of the Access HBsAg and the Access HBsAg Confirmatory assays on the DxI 9000 Access Immunoassay Analyzer (Beckman Coulter, Inc.). Materials and methods: Diagnostic specificity and sensitivity of the Access HBsAg and Access HBsAg Confirmatory assays were evaluated by comparing the Access assays to the final HBsAg sample status determined using the Architect, PRISM, or Elecsys HBsAg assays, along with Architect or PRISM HBsAg Confirmatory assays. Imprecision, sensitivity on seroconversion panels, analytical sensitivity on WHO, and recognition of HBV variants were also evaluated. Results: A total of 7534 samples were included in the analysis (6047 blood donors, 1032 hospitalized patients, 455 positive patients' samples). Access HBsAg assay sensitivity and specificity were at 100.00% (99.19-100.0) and 99.92% (99.82-99.97), respectively. Sensitivity of Access HBsAg Confirmatory assay was 100.00% (99.21-100.0) on the 464 HBsAg positive samples. The use of a high positive algorithm for the Access HBsAg assay, wherein samples with S/CO ≥ 100.00 were considered positive without requiring repeat or confirmatory testing, was successfully evaluated with all 450 specimens with S/CO greater than 100.00 (sensitivity 100.00%; 99.19-100.0). Access HBsAg assay demonstrated good analytical performance, equivalent recognition of seroconversion panels compared to Architect assay, and an analytical sensitivity between 0.022 and 0.025 IU/mL. All HBV genotypes, subtypes and mutants were well detected without analytical sensitivity loss. Conclusion: Access HBsAg and Access HBsAg Confirmatory assays demonstrated robust performances. They provide low samples volume requirements and a simplified process, no systematic retesting for high positive samples.

3.
J Clin Microbiol ; 62(5): e0009524, 2024 May 08.
Article En | MEDLINE | ID: mdl-38534108

Diagnosing of human immunodeficiency virus (HIV) types 1 and 2 requires a screening with a highly sensitive and specific enzyme immunoassay and a low detection limit for the HIV-1 p24 antigen to minimize the diagnostic window. The objective of the study was to determine the sensitivity, specificity, and p24 limit of detection of the Access HIV combo V2 assay. Retrospective part of sensitivity: 452 HIV-1 positive samples from 403 chronic (9 different HIV-1 group M subtypes, 22 different HIV-1 group M CRFs, and 3 HIV-1 group O), 49 primary HIV-1 infections, 103 HIV-2 positive samples assessed at Pitié-Salpêtrière Hospital, 600 untyped HIV-1, 10 subtype-D, and 159 untyped HIV-2 samples assessed in Bio-Rad Laboratories. Prospective part of clinical specificity: all consecutive samples in two blood donor facilities and Pitié-Salpêtrière (6,570 patients) tested with Access HIV combo V2 and respectively Prism HIV O Plus (Abbott) or Architect HIV Ag/Ab Combo (Abbott) for Ag/Ab screening, and Procleix Ultrio (Gen Probe) for HIV RNA screening. Limit of detection for p24 antigen was assessed on recombinant virus-like particles (10 HIV-1 group M subtypes/CRFs, HIV-1 group O). Sensitivity [95% confidence interval (CI)] of Access HIV combo V2 was 100% (99.63-100) for HIV-1 chronic infection, 100% (98.55-100) for HIV-2 chronic infection, and 100% (93.00-100) for HIV-1 primary infection. Specificity (95% CI) was 99.98 (99.91-100). Limit of detection for p24 antigen was around 0.43 IU/mL [interquartile range (0.38-0.56)], and consistent across the 11 analyzed subtypes/CRFs. Hence, with both high sensitivity and specificity, Access HIV combo V2 is a suitable screening assay for HIV-1/2 infection. IMPORTANCE: Bio-Rad is one of the leading human immunodeficiency virus (HIV) screening test manufacturers. This laboratory released in 2021 their new version of the Access combo HIV test. However, to date, there have been no studies regarding its performance, especially its limit of detection of the diverse p24 antigen. We present the sensitivity (chronic and primary HIV-1 infection and HIV-2 chronic infection), specificity (blood donors and hospitalized patients), and raw data for the p24/seroconversion panels the manufacturer gave to the European agencies.


HIV Core Protein p24 , HIV Infections , HIV-1 , HIV-2 , Mass Screening , Sensitivity and Specificity , Humans , HIV Infections/diagnosis , HIV-1/genetics , HIV-1/classification , HIV-1/isolation & purification , HIV-1/immunology , Retrospective Studies , HIV Core Protein p24/blood , HIV-2/immunology , HIV-2/classification , HIV-2/genetics , HIV-2/isolation & purification , Mass Screening/methods , Prospective Studies , HIV Testing/methods , Male
4.
Haematologica ; 105(3): 610-622, 2020 03.
Article En | MEDLINE | ID: mdl-31413092

Hereditary xerocytosis is a dominantly inherited red cell membrane disorder caused in most cases by gain-of-function mutations in PIEZO1, encoding a mechanosensitive ion channel that translates a mechanic stimulus into calcium influx. We found that PIEZO1 was expressed early in erythroid progenitor cells, and investigated whether it could be involved in erythropoiesis, besides having a role in the homeostasis of mature red cell hydration. In UT7 cells, chemical PIEZO1 activation using YODA1 repressed glycophorin A expression by 75%. This effect was PIEZO1-dependent since it was reverted using specific short hairpin-RNA knockdown. The effect of PIEZO1 activation was confirmed in human primary progenitor cells, maintaining cells at an immature stage for longer and modifying the transcriptional balance in favor of genes associated with early erythropoiesis, as shown by a high GATA2/GATA1 ratio and decreased α/ß-globin expression. The cell proliferation rate was also reduced, with accumulation of cells in G0/G1 of the cell cycle. The PIEZO1-mediated effect on UT7 cells required calcium-dependent activation of the NFAT and ERK1/2 pathways. In primary erythroid cells, PIEZO1 activation synergized with erythropoietin to activate STAT5 and ERK, indicating that it may modulate signaling pathways downstream of erythropoietin receptor activation. Finally, we studied the in-vitro erythroid differentiation of primary cells obtained from 14 PIEZO1-mutated patients, from 11 families, carrying ten different mutations. We observed a delay in erythroid differentiation in all cases, ranging from mild (n=3) to marked (n=8). Overall, these data demonstrate a role for PIEZO1 during erythropoiesis, since activation of PIEZO1 - both chemically and through activating mutations - delays erythroid maturation, providing new insights into the pathophysiology of hereditary xerocytosis.


Anemia, Hemolytic, Congenital , Ion Channels , Anemia, Hemolytic, Congenital/genetics , Cell Differentiation , Erythropoiesis/genetics , Humans , Hydrops Fetalis , Ion Channels/genetics , Stem Cells
...