Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Eur J Neurosci ; 59(6): 1242-1259, 2024 Mar.
Article En | MEDLINE | ID: mdl-37941514

Ca2+ entry into nigrostriatal dopamine (DA) neurons and axons via L-type voltage-gated Ca2+ channels (LTCCs) contributes, respectively, to pacemaker activity and DA release and has long been thought to contribute to vulnerability to degeneration in Parkinson's disease. LTCC function is greater in DA axons and neurons from substantia nigra pars compacta than from ventral tegmental area, but this is not explained by channel expression level. We tested the hypothesis that LTCC control of DA release is governed rather by local mechanisms, focussing on candidate biological factors known to operate differently between types of DA neurons and/or be associated with their differing vulnerability to parkinsonism, including biological sex, α-synuclein, DA transporters (DATs) and calbindin-D28k (Calb1). We detected evoked DA release ex vivo in mouse striatal slices using fast-scan cyclic voltammetry and assessed LTCC support of DA release by detecting the inhibition of DA release by the LTCC inhibitors isradipine or CP8. Using genetic knockouts or pharmacological manipulations, we identified that striatal LTCC support of DA release depended on multiple intersecting factors, in a regionally and sexually divergent manner. LTCC function was promoted by factors associated with Parkinsonian risk, including male sex, α-synuclein, DAT and a dorsolateral co-ordinate, but limited by factors associated with protection, that is, female sex, glucocerebrosidase activity, Calb1 and ventromedial co-ordinate. Together, these data show that LTCC function in DA axons and isradipine effect are locally governed and suggest they vary in a manner that in turn might impact on, or reflect, the cellular stress that leads to parkinsonian degeneration.


Dopamine , Parkinson Disease , Female , Mice , Animals , Male , Isradipine/pharmacology , Isradipine/metabolism , Dopamine/metabolism , Calcium Channels, L-Type/metabolism , alpha-Synuclein/metabolism , Parkinson Disease/metabolism , Corpus Striatum/metabolism , Dopaminergic Neurons/metabolism , Substantia Nigra/metabolism , Risk Factors , Calcium/metabolism
2.
J Psychopharmacol ; 37(4): 396-407, 2023 04.
Article En | MEDLINE | ID: mdl-36772859

BACKGROUND: Dyslipidaemia is an important cardiovascular risk factor for people with severe mental illness, contributing to premature mortality. The link between antipsychotics and dyslipidaemia is well established, while evidence on antidepressants is mixed. AIMS: To investigate if antidepressant/antipsychotic use was associated with lipid parameters in UK Biobank participants and if CYP2C19 and CYP2D6 genetic variation plays a role. METHODS: Review of self-reported prescription medications identified participants taking antidepressants/antipsychotics. Total, low-, and high-density lipoprotein cholesterol (L/HDL-C) and triglycerides derived from blood samples. CYP2C19 and CYP2D6 metabolic phenotypes were assigned from genetic data. Linear regression investigated aims, adjusted for key covariates. RESULTS: Of 469,739 participants, 36,043 took antidepressants (53% female, median age 58, 17% taking cholesterol-lowering medications) and 3255 took antipsychotics (58% female, median age 57, 27% taking cholesterol-lowering medications). Significant associations were found between use of each amitriptyline, fluoxetine, citalopram/escitalopram, sertraline, paroxetine and venlafaxine with higher total cholesterol, LDL-C, and triglycerides and lower HDL-C, compared to participants not taking each medication. Venlafaxine was associated with the worst lipid profile (total cholesterol, adjusted mean difference: 0.21 mmol/L, 95% confidence interval (CI): 0.17 to 0.26, p < 0.001). Antipsychotic use was significantly associated with lower HDL-C and higher triglycerides. In participants taking sertraline, CYP2C19 intermediate metabolisers had higher HDL-C (0.05 mmol/L, 95% CI: 0.01 to 0.09, p = 0.007) and lower triglycerides (-0.17 mmol/L, 95% CI: -0.29 to -0.05, p = 0.007), compared to normal metabolisers. CONCLUSIONS: Antidepressants were significantly associated with adverse lipid profiles, potentially warranting baseline and regular monitoring. Further research should investigate the mechanistic pathways underlying the protective effects of the CYP2C19 intermediate metaboliser phenotype on HDL-C and triglycerides in people taking sertraline.


Antipsychotic Agents , Cytochrome P-450 CYP2D6 , Female , Male , Animals , Cytochrome P-450 CYP2D6/genetics , Sertraline , Venlafaxine Hydrochloride , Cytochrome P-450 CYP2C19 , Antidepressive Agents/pharmacology , Triglycerides , Cholesterol , United Kingdom
3.
ACS Chem Neurosci ; 10(8): 3419-3426, 2019 08 21.
Article En | MEDLINE | ID: mdl-31361457

The calcium-binding protein calbindin-D28K, or calb1, is expressed at higher levels by dopamine (DA) neurons originating in the ventral tegmental area (VTA) than in the adjacent substantia nigra pars compacta (SNc). Calb1 has received attention for a potential role in neuroprotection in Parkinson's disease. The underlying physiological roles for calb1 are incompletely understood. We used cre-loxP technology to knock down calb1 in mouse DA neurons to test whether calb1 governs axonal release of DA in the striatum, detected using fast-scan cyclic voltammetry ex vivo. In the ventral but not dorsal striatum, calb1 knockdown elevated DA release and modified the spatiotemporal coupling of Ca2+ entry to DA release. Furthermore, calb1 knockdown enhanced DA uptake but attenuated the impact of DA transporter (DAT) inhibition by cocaine on underlying DA release. These data reveal that calb1 acts through a range of mechanisms underpinning both DA release and uptake to limit DA transmission in the ventral but not dorsal striatum.


Calbindin 1/metabolism , Corpus Striatum/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine/metabolism , Animals , Calcium/metabolism , Dopaminergic Neurons/metabolism , Gene Knockdown Techniques , Mice
4.
J Physiol ; 593(4): 929-46, 2015 Feb 15.
Article En | MEDLINE | ID: mdl-25533038

KEY POINTS: The voltage-gated Ca(2+) channels (VGCCs) that catalyse striatal dopamine transmission are critical to dopamine function and might prime subpopulations of neurons for parkinsonian degeneration. However, the VGCCs that operate on mesostriatal axons are incompletely defined; previous studies encompassed channels on striatal cholinergic interneurons that strongly influence dopamine transmission. We define that multiple types of axonal VGCCs operate that extend beyond classic presynaptic N/P/Q channels to include T- and L-types. We reveal differences in VGCC function between mouse axon types that in humans are vulnerable versus resistant to Parkinson's disease. We show for the first time that this is underpinned by different sensitivity of dopamine transmission to extracellular Ca(2+) and by different spatiotemporal intracellular Ca(2+) microdomains. These data define key principles of how Ca(2+) and VGCCs govern dopamine transmission in the healthy brain and reveal differences between neuron types that might contribute to vulnerability in disease. ABSTRACT: The axonal voltage-gated Ca(2+) channels (VGCCs) that catalyse dopamine (DA) transmission are incompletely defined. Yet, they are critical to DA function and might prime subpopulations of DA neurons for parkinsonian degeneration. Previous studies of VGCCs will have encompassed those on striatal cholinergic interneurons, which strongly influence DA transmission. We identify which VGCCs on DA axons govern DA transmission, we determine their dynamic properties and reveal an underlying basis for differences between the caudate putamen (CPu) and nucleus accumbens (NAc). We detected DA release evoked electrically during nicotinic receptor blockade or optogenetically by light activation of channel rhodopsin-expressing DA axons in mouse striatal slices. Subtype-specific VGCC blockers indicated that N-, Q-, T- and L-VGCCs govern DA release in CPu, but in NAc, T and L-channels are relatively silent. The roles of the most dominant channels were inversely frequency-dependent, due to low-pass filtering of DA release by Ca(2+)-dependent relationships between initial release probability and short-term plasticity. Ca(2+) concentration-response curves revealed that differences between CPu and NAc were due to greater underlying Ca(2+) sensitivity of DA transmission from CPu axons. Functions for 'silent' L- and T-channels in NAc could be unmasked by elevating extracellular [Ca(2+)]. Furthermore, we identified a greater coupling between BAPTA-sensitive, fast Ca(2+) transients and DA transmission in CPu axons, and evidence for endogenous fast buffering of Ca(2+) in NAc. These data reveal that a range of VGCCs operate dynamically on DA axons, depending on local driving forces. Furthermore, they reveal dramatic differences in Ca(2+) handling between axonal subpopulations that show different vulnerability to parkinsonian degeneration.


Calcium Channels/physiology , Corpus Striatum/physiology , Dopamine/physiology , Animals , Axons/physiology , Calcium/physiology , In Vitro Techniques , Male , Mice, Inbred C57BL
...