Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Pharmacol Ther ; 115(6): 1346-1357, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38415785

RESUMEN

Enpatoran is a novel, highly selective, and potent dual toll-like receptor (TLR)7 and TLR8 inhibitor currently under development for the treatment of autoimmune disorders including systemic lupus erythematosus (SLE), cutaneous lupus erythematosus (CLE), and myositis. The ongoing phase II study (WILLOW; NCT05162586) is evaluating enpatoran for 24 weeks in patients with active SLE or CLE and is currently recruiting. To support development of WILLOW as an Asia-inclusive multiregional clinical trial (MRCT) according to International Conference on Harmonisation E5 and E17 principles, we have evaluated ethnic sensitivity to enpatoran based on clinical pharmacokinetic (PK), pharmacodynamic (PD), and safety data from an ethno-bridging study (NCT04880213), supplemented by relevant quantitative PK, PD, and disease trajectory modeling (DTM) results, and drug metabolism/disease knowledge. A single-center, open-label, sequential dose group study in White and Japanese subjects matched by body weight, height, and sex demonstrated comparable PK and PD properties for enpatoran in Asian vs. non-Asian (White and other) subjects across single 100, 200, and 300 mg orally administered doses. DTM suggested no significant differences in SLE disease trajectory for Asian vs. non-Asian individuals. Aldehyde oxidase (AOX) is considered to be a key contributor to enpatoran metabolism, and a literature review indicated no relevant ethnic differences in AOX function based on in vitro and clinical PK data from marketed drugs metabolized by AOX, supporting the conclusion of low ethnic sensitivity for enpatoran. Taken together, the inclusion of Asian patients in MRCTs including WILLOW was informed based on a Totality of Evidence approach.


Asunto(s)
Lupus Eritematoso Sistémico , Receptores Toll-Like , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Asia , Lupus Eritematoso Cutáneo/tratamiento farmacológico , Lupus Eritematoso Sistémico/tratamiento farmacológico , Proyectos de Investigación , Ensayos Clínicos Fase II como Asunto , Receptores Toll-Like/antagonistas & inhibidores , Pueblos del Este de Asia , Blanco
2.
Xenobiotica ; 53(8-9): 547-558, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37880944

RESUMEN

Evobrutinib is a highly selective, covalent, central nervous system-penetrant Bruton's tyrosine kinase (BTK) inhibitor, currently in Phase III trials for the treatment of relapsing multiple sclerosis. One major circulating metabolite of evobrutinib has been previously identified as the racemic dihydro-diol M463-2 (MSC2430422) in a Phase I human mass balance study.Phenotyping experiments were conducted to confirm the metabolic pathway of evobrutinib to M463-2. Ratio of the enantiomers was determined by enantioselective liquid chromatography with tandem mass spectrometry analysis of plasma samples from humans and preclinical species. Drug-drug interaction (DDI) characterisation, evaluation of pharmacological activity on BTK, and off-target screening experiments followed assessing safety of the metabolite.The biotransformation of evobrutinib to M463-2 was determined to be a two-step process with a CYP-mediated oxidation acting to form an epoxide intermediate, which was further hydrolysed by soluble and mitochondrial epoxide hydrolase. Only the (S)-enantiomer was determined to be a major metabolite, the (R)-enantiomer was minor. In vitro studies demonstrated the (S)-enantiomer lacked clinically relevant pharmacological activity, off-target effects and DDIs.The biotransformation of evobrutinib to its major metabolite has been elucidated, with the major (S)-enantiomer being shown to pose no on/off target or DDI risks.


Asunto(s)
Piperidinas , Pirimidinas , Humanos , Piperidinas/farmacología , Biotransformación , Interacciones Farmacológicas , Inhibidores de Proteínas Quinasas/farmacología
3.
Drug Metab Dispos ; 41(4): 814-26, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23355637

RESUMEN

The natural product fumagillin exhibits potent antiproliferative and antiangiogenic properties. The semisynthetic analog PPI-2458, [(3R,4S,5S,6R)-5-methoxy-4-[(2R,3R)-2-methyl-3-(3-methylbut-2-enyl)oxiran-2-yl]-1-oxaspiro[2.5]octan-6-yl] N-[(2R)-1-amino-3-methyl-1-oxobutan-2-yl]carbamate, demonstrates rapid inactivation of its molecular target, methionine aminopeptidase-2 (MetAP2), and good efficacy in several rodent models of cancer and inflammation with oral dosing despite low apparent oral bioavailability. To probe the basis of its in vivo efficacy, the metabolism of PPI-2458 was studied in detail. Reaction phenotyping identified CYP3A4/5 as the major source of metabolism in humans. Six metabolites were isolated from liver microsomes and characterized by mass spectrometry and nuclear resonance spectroscopy, and their structures were confirmed by chemical synthesis. The synthetic metabolites showed correlated inhibition of MetAP2 enzymatic activity and vascular endothelial cell growth. In an ex vivo experiment, MetAP2 inhibition in white blood cells, thymus, and lymph nodes in rats after single dosing with PPI-2458 and the isolated metabolites was found to correlate with the in vitro activity of the individual species. In a phase 1 clinical study, PPI-2458 was administered to patients with non-Hodgkin lymphoma. At 15 mg administered orally every other day, MetAP2 in whole blood was 80% inactivated for up to 48 hours, although the exposure of the parent compound was only ∼10% that of the summed cytochrome P450 metabolites. Taken together, the data confirm the participation of active metabolites in the in vivo efficacy of PPI-2458. The structures define a metabolic pathway for PPI-2458 that is distinct from that of TNP-470 ([(3R,4S,5S,6R)-5-methoxy-4-[(2R,3R)-2-methyl-3-(3-methylbut-2-enyl)oxiran-2-yl]-1-oxaspiro[2.5]octan-6-yl] N-(2-chloroacetyl)carbamate). The high level of MetAP2 inhibition achieved in vivo supports the value of fumagillin-derived therapeutics for angiogenic diseases.


Asunto(s)
Aminopeptidasas/antagonistas & inhibidores , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/farmacocinética , Compuestos Epoxi/farmacocinética , Metaloendopeptidasas/antagonistas & inhibidores , Valina/análogos & derivados , Aminopeptidasas/sangre , Animales , Esquema de Medicación , Compuestos Epoxi/administración & dosificación , Compuestos Epoxi/análisis , Compuestos Epoxi/farmacología , Humanos , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/metabolismo , Linfoma no Hodgkin/sangre , Linfoma no Hodgkin/tratamiento farmacológico , Metaloendopeptidasas/sangre , Microsomas Hepáticos/química , Microsomas Hepáticos/metabolismo , Ratas , Relación Estructura-Actividad , Timo/efectos de los fármacos , Timo/metabolismo , Valina/administración & dosificación , Valina/análisis , Valina/farmacocinética , Valina/farmacología
4.
Drug Metab Rev ; 40(2): 317-54, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18464048

RESUMEN

Elucidation of the key mechanisms that confer interindividual differences in drug response remains an important focus of drug disposition and clinical pharmacology research. We now know both environmental and host genetic factors contribute to the apparent variability in drug efficacy or in some cases, toxicity. In addition to the widely studied and recognized genes involved in the metabolism of drugs in clinical use today, we now recognize that membrane-bound proteins, broadly referred to as transporters, may be equally as important to the disposition of a substrate drug, and that genetic variation in drug transporter genes may be a major contributor of the apparent intersubject variation in drug response, both in terms of attained plasma and tissue drug level at target sites of action. Of particular relevance to drug disposition are members of the ATP Binding Cassette (ABC) superfamily of efflux transporters. In this review a comprehensive assessment and annotation of recent findings in relation to genetic variation in the Multidrug Resistance Proteins 1-5 (ABCC1-5) and Breast Cancer Resistance Protein (ABCG2) are described, with particular emphasis on the impact of such transporter genetic variation to drug disposition or efficacy.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas de Neoplasias/genética , Preparaciones Farmacéuticas/metabolismo , Farmacogenética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/metabolismo , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Genotipo , Humanos , Proteínas de Transporte de Membrana/genética , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Fenotipo
5.
Hum Mutat ; 29(5): 659-69, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18300232

RESUMEN

Multiple drug resistance protein 4 (MRP4, ABCC4) belongs to the C subfamily of the ATP-binding cassette (ABC) transporter superfamily and participates in the transport of diverse antiviral and chemotherapeutic agents such as 6-mercaptopurine (6-MP) and 9-(2-phosphonyl methoxyethyl) adenine (PMEA). We have undertaken a comprehensive functional characterization of protein variants of MRP4 found in Caucasians and other ethnicities. A total of 11 MRP4 missense genetic variants (nonsynonymous SNPs), fused to green fluorescent protein (GFP), were examined in Xenopus laevis oocytes for their effect on expression, localization, and function of the transporter. Radiolabeled 6-MP and PMEA were chosen as transport substrates. All MRP4 protein variants were found to be expressed predominantly in the oocyte membrane. A total of four variants (Y556C, E757 K, V776I, and T1142 M) exhibited a 20% to 40% reduced expression level compared to the wild type. Efflux studies showed that 6-MP is transported by MRP4 in unmodified form. Compared to wild-type MRP4, the transmembrane variant V776I, revealed a significant lower activity in 6-MP transport, while the amino acid exchange Y556C in the Walker(B) motif displayed significantly higher transport of PMEA. The transport properties of the other variants were comparable to wild-type MRP4. Our study shows that Xenopus oocytes are well suited to characterize MRP4 and its protein variants. Carriers of the rare MRP4 variants Y556C and V776I may have altered disposition of MRP4 substrates.


Asunto(s)
Adenina/análogos & derivados , Mercaptopurina/farmacocinética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Mutación Missense , Organofosfonatos/farmacocinética , Adenina/farmacocinética , Animales , Secuencia de Bases , Cartilla de ADN , Proteínas Fluorescentes Verdes/genética , Humanos , Mutagénesis Sitio-Dirigida , Proteínas Recombinantes de Fusión/genética , Xenopus laevis
6.
Life Sci ; 80(16): 1490-4, 2007 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-17300812

RESUMEN

The multidrug resistance protein 3 (MRP3/gene symbol: ABCC3) is an ATP-dependent efflux pump mediating the transport of endogenous glucuronides and conjugated drug metabolites across cell membranes. In humans the hepatic expression of ABCC3 mRNA seems to be influenced by the polymorphism C>T at the position -211 in the promoter of the ABCC3 gene. The aim of this study was to investigate the possible mechanisms of how this SNP influences the MRP3 expression. Promoter luciferase reporter gene constructs representing 0.5, 1.1, 4.4, and 8.1 kb upstream of the translational start site were cloned with cytosine or thymine at position -211 and transfected into HepG2, Caco-2, and LS174T cells. Reporter gene activity was dependent on the length of the promoter sequence but interestingly not on the nucleotide at position -211. Cotransfection with FTF cDNA (Fetoprotein Transcription Factor) binding to elements near the -211 polymorphism increased promoter activity in all constructs except the 0.5 kb fragment also independently of the -211 SNP. Taken together, we did not find any influence of the -211C>T ABCC3 promoter polymorphism on either the basal or the FTF induced reporter gene activity. Whether other tissue specific mechanisms reveal an impact of this SNP on the in vivo regulation of MRP3 remains to be determined.


Asunto(s)
Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Polimorfismo de Nucleótido Simple/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Análisis de Varianza , Clonación Molecular , Cartilla de ADN , Genes Reporteros/genética , Humanos , Luciferasas , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Transfección
7.
Naunyn Schmiedebergs Arch Pharmacol ; 372(6): 432-43, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16525793

RESUMEN

Organic anion transporting polypeptides (OATPs) mediate the uptake of a broad range of compounds into cells. Substrates for members of the OATP family include bile salts, hormones, and steroid conjugates as well as drugs like the HMG-CoA-reductase inhibitors (statins), cardiac glycosides, anticancer agents like methotrexate, and antibiotics like rifampicin. OATPs are expressed in a variety of different tissues, including intestine, liver, kidney, and brain, suggesting that they play a critical role in drug absorption, distribution, and excretion. The identification and functional characterisation of naturally occurring variations in genes encoding human OATP (SLCO) family members is in the focus of transporter research. As a result of their broad substrate spectrum and their wide tissue distribution, altered transport characteristics or protein localisation can contribute significantly to interindividual variations of drug effects. The analysis of the consequences of genetic variations in genes encoding transport proteins may, therefore, contribute to a better understanding of interindividual differences in drug effects and to individualise treatment regimens with drugs that are substrates for human OATP proteins. In this review, we summarise the current knowledge on genetic variations in transporter genes encoding human OATP family members and their functional consequences analysed by in vitro and in vivo studies.


Asunto(s)
Transportadores de Anión Orgánico/genética , Preparaciones Farmacéuticas/metabolismo , Polimorfismo Genético/genética , Haplotipos/genética , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacocinética , Transportadores de Anión Orgánico/química , Transportadores de Anión Orgánico/metabolismo , Farmacogenética , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...