Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 8175, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39289391

RESUMEN

Cerebral dopamine neurotrophic factor (CDNF) is an unconventional neurotrophic factor that is a disease-modifying drug candidate for Parkinson's disease. CDNF has pleiotropic protective effects on stressed cells, but its mechanism of action remains incompletely understood. Here, we use state-of-the-art advanced structural techniques to resolve the structural basis of CDNF interaction with GRP78, the master regulator of the unfolded protein response (UPR) pathway. Subsequent binding studies confirm the obtained structural model of the complex, eventually revealing the interaction site of CDNF and GRP78. Finally, mutating the key residues of CDNF mediating its interaction with GRP78 not only results in impaired binding of CDNF but also abolishes the neuroprotective activity of CDNF-derived peptides in mesencephalic neuron cultures. These results suggest that the molecular interaction with GRP78 mediates the neuroprotective actions of CDNF and provide a structural basis for development of next generation CDNF-based therapeutic compounds against neurodegenerative diseases.


Asunto(s)
Chaperón BiP del Retículo Endoplásmico , Proteínas de Choque Térmico , Respuesta de Proteína Desplegada , Chaperón BiP del Retículo Endoplásmico/metabolismo , Humanos , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Animales , Unión Proteica , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/metabolismo , Neuronas/metabolismo , Modelos Moleculares , Sitios de Unión
2.
Protein Sci ; 33(9): e5093, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39180489

RESUMEN

RTEL1 is an essential DNA helicase which plays an important role in various aspects of genome stability, from telomere metabolism to DNA replication, repair and recombination. RTEL1 has been implicated in a number of genetic diseases and cancer development, including glioma, breast, lung and gastrointestinal tumors. RTEL1 is a FeS helicase but, in addition to the helicase core, it comprises a long C-terminal region which includes a number of folded domains connected by intrinsically disordered loops and mediates RTEL1 interaction with factors involved in pivotal cellular pathways. However, information on the architecture and the function of this region is still limited. We expressed and purified a variety of fragments encompassing the folded domains and the unstructured regions. We determined the crystal structure of the second repeat, confirming that it has a fold similar to the harmonin homology domains. SAXS data provide low-resolution information on all the fragments and suggest that the presence of the RING domain affects the overall architecture of the C-terminal region, making the structure significantly more compact. NMR data provide experimental information on the interaction between PCNA and the RTEL1 C-terminal region, revealing a putative low-affinity additional site of interaction. A biochemical analysis shows that the C-terminal region, in addition to a preference for telomeric RNA and DNA G-quadruplexes, has a high affinity for R-loops and D-loops, consistent with the role played by the RTEL1 helicase in homologous recombination, telomere maintenance and preventing replication-transcription conflicts. We further dissected the contribution of each domain in binding different substrates.


Asunto(s)
ADN Helicasas , Humanos , ADN Helicasas/química , ADN Helicasas/metabolismo , ADN Helicasas/genética , Cristalografía por Rayos X , Modelos Moleculares , Antígeno Nuclear de Célula en Proliferación/química , Antígeno Nuclear de Célula en Proliferación/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Dominios Proteicos , Dispersión del Ángulo Pequeño
3.
Adv Healthc Mater ; : e2401252, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38889433

RESUMEN

Lipid nanoparticle (LNP) remains the most advanced platform for messenger RNA (mRNA) delivery. To date, mRNA LNPs synthesis is mostly performed by mixing lipids and mRNA with microfluidics. In this study, a cost-effective microfluidic setup for synthesizing mRNA LNPs is developed. It allows to fine-tune the LNPs characteristics without compromising LNP properties. It is compared with a commercial device (NanoAssemblr) and ethanol injection and the influence of manufacturing conditions on the performance of mRNA LNPs is investigated. LNPs prepared by ethanol injection exhibit broader size distributions and more inhomogeneous internal structure (e.g., bleb-like substructures), while other LNPs show uniform structure with dense cores. Small angel X-ray scattering (SAXS) data indicate a tighter interaction between mRNA and lipids within LNPs synthesized by custom device, compared to LNPs produced by NanoAssemblr. Interestingly, the better transfection efficiency of polysarcosine (pSar)-modified LNPs correlates with a higher surface roughness than that of PEGylated ones. The manufacturing approach, however, shows modest influence on mRNA expression in vivo. In summary, the home-developed cost-effective microfluidic device can synthesize LNPs and represents a potent alternative to NanoAssemblr. The preparation methods show notable effect on LNPs' structure but a minor influence on mRNA delivery in vitro and in vivo.

4.
Structure ; 32(3): 316-327.e5, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38181786

RESUMEN

Eukaryotic tRNA guanine transglycosylase (TGT) is an RNA-modifying enzyme which catalyzes the base exchange of the genetically encoded guanine 34 of tRNAsAsp,Asn,His,Tyr for queuine, a hypermodified 7-deazaguanine derivative. Eukaryotic TGT is a heterodimer comprised of a catalytic and a non-catalytic subunit. While binding of the tRNA anticodon loop to the active site is structurally well understood, the contribution of the non-catalytic subunit to tRNA binding remained enigmatic, as no complex structure with a complete tRNA was available. Here, we report a cryo-EM structure of eukaryotic TGT in complex with a complete tRNA, revealing the crucial role of the non-catalytic subunit in tRNA binding. We decipher the functional significance of these additional tRNA-binding sites, analyze solution state conformation, flexibility, and disorder of apo TGT, and examine conformational transitions upon tRNA binding.


Asunto(s)
Pentosiltransferasa , ARN de Transferencia , Humanos , Sitios de Unión/genética , Pentosiltransferasa/química , ARN , ARN de Transferencia/química
5.
Commun Biol ; 6(1): 1057, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853181

RESUMEN

Free-electron lasers (FEL) are revolutionizing X-ray-based structural biology methods. While protein crystallography is already routinely performed at FELs, Small Angle X-ray Scattering (SAXS) studies of biological macromolecules are not as prevalent. SAXS allows the study of the shape and overall structure of proteins and nucleic acids in solution, in a quasi-native environment. In solution, chemical and biophysical parameters that have an influence on the structure and dynamics of molecules can be varied and their effect on conformational changes can be monitored in time-resolved XFEL and SAXS experiments. We report here the collection of scattering form factors of proteins in solution using FEL X-rays. The form factors correspond to the scattering signal of the protein ensemble alone; the scattering contributions from the solvent and the instrument are separately measured and accurately subtracted. The experiment was done using a liquid jet for sample delivery. These results pave the way for time-resolved studies and measurements from dilute samples, capitalizing on the intense and short FEL X-ray pulses.


Asunto(s)
Electrones , Proteínas , Dispersión del Ángulo Pequeño , Rayos X , Difracción de Rayos X , Proteínas/química , Rayos Láser
6.
Sci Rep ; 13(1): 15764, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737457

RESUMEN

We present a generically applicable approach to determine an extensive set of size-dependent critical quality attributes inside nanoparticulate pharmaceutical products. By coupling asymmetrical-flow field-flow fractionation (AF4) measurements directly in-line with solution small angle X-ray scattering (SAXS), vital information such as (i) quantitative, absolute size distribution profiles, (ii) drug loading, (iii) size-dependent internal structures, and (iv) quantitative information on free drug is obtained. Here the validity of the method was demonstrated by characterizing complex mRNA-based lipid nanoparticle products. The approach is particularly applicable to particles in the size range of 100 nm and below, which is highly relevant for pharmaceutical products-both biologics and nanoparticles. The method can be applied as well in other fields, including structural biology and environmental sciences.


Asunto(s)
Nanopartículas , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Rayos X , ARN Mensajero/genética
7.
Anal Biochem ; 680: 115302, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37652129

RESUMEN

Fully characterizing the post-translational modifications present in charge variants of therapeutic monoclonal antibodies (mAbs), particularly acidic variants, is challenging and remains an open area of investigation. In this study, to test the possibility that chromatographically separated acidic fractions of therapeutic mAbs contain conformational variants, we undertook a mAb refolding approach using as a case study an IgG1 that contains many unidentified acidic peaks with few post-translational modifications, and examined whether different acidic peak fractions could be generated corresponding to these variants. The IgG1 drug substance was denatured by guanidine hydrochloride, without a reducing agent present, and gradually refolded by stepwise dialysis against arginine hydrochloride used as an aggregation suppressor. Each acidic chromatographic peak originally contained in the IgG1 drug substance was markedly increased by this stepwise refolding process, indicating that these acidic variants are conformational variants. However, no conformational changes were detected by small-angle X-ray scattering experiments for the whole IgG1, indicating that the conformational changes are minor. Chromatographic, thermal and fluorescence analyses suggested that the conformational changes are a localized denaturation effect centred around the aromatic amino acid regions. This study provides new insights into the characterization of acidic variants that are currently not fully understood.


Asunto(s)
Anticuerpos Monoclonales , Arginina , Cationes , Cromatografía , Inmunoglobulina G
8.
Sci Rep ; 13(1): 9656, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316549

RESUMEN

Ribosome biogenesis is a key process in all eukaryotic cells that requires hundreds of ribosome biogenesis factors (RBFs), which are essential to build the mature ribosomes consisting of proteins and rRNAs. The processing of the required rRNAs has been studied extensively in yeast and mammals, but in plants much is still unknown. In this study, we focused on a RBF from A. thaliana that we named NUCLEOLAR RNA CHAPERONE-LIKE 1 (NURC1). NURC1 was localized in the nucleolus of plant cell nuclei, and other plant RBF candidates shared the same localization. SEC-SAXS experiments revealed that NURC1 has an elongated and flexible structure. In addition, SEC-MALLS experiments confirmed that NURC1 was present in its monomeric form with a molecular weight of around 28 kDa. RNA binding was assessed by performing microscale thermophoresis with the Arabidopsis internal transcribed spacer 2 (ITS2) of the polycistronic pre-rRNA precursor, which contains the 5.8S, 18S, and 25S rRNA. NURC1 showed binding activity to the ITS2 with a dissociation constant of 228 nM and exhibited RNA chaperone-like activity. Our data suggested that NURC1 may have a function in pre-rRNA processing and thus ribosome biogenesis.


Asunto(s)
Arabidopsis , Proteínas de Plantas , Animales , Proteínas Nucleares , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Arabidopsis/genética , ARN , Precursores del ARN , Mamíferos
9.
Acta Crystallogr D Struct Biol ; 78(Pt 11): 1315-1336, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36322416

RESUMEN

Through an expansive international effort that involved data collection on 12 small-angle X-ray scattering (SAXS) and four small-angle neutron scattering (SANS) instruments, 171 SAXS and 76 SANS measurements for five proteins (ribonuclease A, lysozyme, xylanase, urate oxidase and xylose isomerase) were acquired. From these data, the solvent-subtracted protein scattering profiles were shown to be reproducible, with the caveat that an additive constant adjustment was required to account for small errors in solvent subtraction. Further, the major features of the obtained consensus SAXS data over the q measurement range 0-1 Å-1 are consistent with theoretical prediction. The inherently lower statistical precision for SANS limited the reliably measured q-range to <0.5 Å-1, but within the limits of experimental uncertainties the major features of the consensus SANS data were also consistent with prediction for all five proteins measured in H2O and in D2O. Thus, a foundation set of consensus SAS profiles has been obtained for benchmarking scattering-profile prediction from atomic coordinates. Additionally, two sets of SAXS data measured at different facilities to q > 2.2 Å-1 showed good mutual agreement, affirming that this region has interpretable features for structural modelling. SAS measurements with inline size-exclusion chromatography (SEC) proved to be generally superior for eliminating sample heterogeneity, but with unavoidable sample dilution during column elution, while batch SAS data collected at higher concentrations and for longer times provided superior statistical precision. Careful merging of data measured using inline SEC and batch modes, or low- and high-concentration data from batch measurements, was successful in eliminating small amounts of aggregate or interparticle interference from the scattering while providing improved statistical precision overall for the benchmarking data set.


Asunto(s)
Benchmarking , Proteínas , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Consenso , Reproducibilidad de los Resultados , Proteínas/química , Solventes
10.
Methods Enzymol ; 677: 1-39, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36410946

RESUMEN

In this chapter, we discuss the various sample delivery systems that are available at most biological SAXS beamlines. The focus is laid on the EMBL Biosaxs beamline P12 at the Petra 3 storage ring on the DESY site in Hamburg, Germany. The minimal requirements necessary to prepare samples are described specifically for macromolecular samples in solution and the background is given on how the physical properties of the scattering process itself determine the sample requirements. We provide a number of exemplary applications as well as guidelines for selecting and performing the right data collection strategy depending on the scientific question at hand. This chapter is aimed at novices to the SAXS technique with biochemical background as well as more experienced users setting out to employ more advanced SAXS set-ups.


Asunto(s)
Sincrotrones , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Sustancias Macromoleculares/química
11.
Sci Adv ; 8(30): eabo0517, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35895815

RESUMEN

Nucleosome assembly requires the coordinated deposition of histone complexes H3-H4 and H2A-H2B to form a histone octamer on DNA. In the current paradigm, specific histone chaperones guide the deposition of first H3-H4 and then H2A-H2B. Here, we show that the acidic domain of DNA repair factor APLF (APLFAD) can assemble the histone octamer in a single step and deposit it on DNA to form nucleosomes. The crystal structure of the APLFAD-histone octamer complex shows that APLFAD tethers the histones in their nucleosomal conformation. Mutations of key aromatic anchor residues in APLFAD affect chaperone activity in vitro and in cells. Together, we propose that chaperoning of the histone octamer is a mechanism for histone chaperone function at sites where chromatin is temporarily disrupted.


Asunto(s)
Histonas , Nucleosomas , ADN/química , Reparación del ADN , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/genética
12.
Protein Sci ; 31(1): 269-282, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34767272

RESUMEN

Small-angle X-ray scattering (SAXS) is an established technique for structural analysis of biological macromolecules in solution. During the last decade, inline chromatography setups coupling SAXS with size exclusion (SEC-SAXS) or ion exchange (IEC-SAXS) have become popular in the community. These setups allow one to separate individual components in the sample and to record SAXS data from isolated fractions, which is extremely important for subsequent data interpretation, analysis, and structural modeling. However, in case of partially overlapping elution peaks, inline chromatography SAXS may still yield scattering profiles from mixtures of components. The deconvolution of these scattering data into the individual fractions is nontrivial and potentially ambiguous. We describe a cross-platform computer program, EFAMIX, for restoring the scattering and concentration profiles of the components based on the evolving factor analysis (EFA). The efficiency of the program is demonstrated in a number of simulated and experimental SEC-SAXS data sets. Sensitivity and limitations of the method are explored, and its applicability to IEC-SAXS data is discussed. EFAMIX requires minimal user intervention and is available to academic users through the program package ATSAS as from release 3.1.


Asunto(s)
Procesamiento Automatizado de Datos , Dispersión del Ángulo Pequeño , Programas Informáticos , Difracción de Rayos X , Cromatografía
13.
Int J Biol Macromol ; 193(Pt A): 401-413, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34673109

RESUMEN

The trimeric CCAAT-binding NF-Y is a "pioneer" Transcription Factor -TF- known to cooperate with neighboring TFs to regulate gene expression. Genome-wide analyses detected a precise stereo-alignment -10/12 bp- of CCAAT with E-box elements and corresponding colocalization of NF-Y with basic-Helix-Loop-Helix (bHLH) TFs. We dissected here NF-Y interactions with USF1 and MAX. USF1, but not MAX, cooperates in DNA binding with NF-Y. NF-Y and USF1 synergize to activate target promoters. Reconstruction of complexes by structural means shows independent DNA binding of MAX, whereas USF1 has extended contacts with NF-Y, involving the USR, a USF-specific amino acid sequence stretch required for trans-activation. The USR is an intrinsically disordered domain and adopts different conformations based on E-box-CCAAT distances. Deletion of the USR abolishes cooperative DNA binding with NF-Y. Our data indicate that the functionality of certain unstructured domains involves adapting to small variation in stereo-alignments of the multimeric TFs sites.


Asunto(s)
ADN/metabolismo , Factores Estimuladores hacia 5'/metabolismo , Regulación de la Expresión Génica , Humanos , Regiones Promotoras Genéticas , Unión Proteica , Dominios Proteicos
14.
PLoS Biol ; 19(4): e3001148, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33844684

RESUMEN

Sarcomeres, the basic contractile units of striated muscle cells, contain arrays of thin (actin) and thick (myosin) filaments that slide past each other during contraction. The Ig-like domain-containing protein myotilin provides structural integrity to Z-discs-the boundaries between adjacent sarcomeres. Myotilin binds to Z-disc components, including F-actin and α-actinin-2, but the molecular mechanism of binding and implications of these interactions on Z-disc integrity are still elusive. To illuminate them, we used a combination of small-angle X-ray scattering, cross-linking mass spectrometry, and biochemical and molecular biophysics approaches. We discovered that myotilin displays conformational ensembles in solution. We generated a structural model of the F-actin:myotilin complex that revealed how myotilin interacts with and stabilizes F-actin via its Ig-like domains and flanking regions. Mutant myotilin designed with impaired F-actin binding showed increased dynamics in cells. Structural analyses and competition assays uncovered that myotilin displaces tropomyosin from F-actin. Our findings suggest a novel role of myotilin as a co-organizer of Z-disc assembly and advance our mechanistic understanding of myotilin's structural role in Z-discs.


Asunto(s)
Actinas/metabolismo , Multimerización de Proteína , Sarcómeros/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/genética , Animales , Células Cultivadas , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Humanos , Ratones , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Contracción Muscular/genética , Músculo Esquelético/metabolismo , Unión Proteica/genética , Dominios y Motivos de Interacción de Proteínas/genética , Multimerización de Proteína/genética , Sarcómeros/genética , Tropomiosina/química , Tropomiosina/genética , Tropomiosina/metabolismo
15.
Elife ; 102021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33570492

RESUMEN

Bovines have evolved a subset of antibodies with ultra-long heavy chain complementarity determining regions that harbour cysteine-rich knob domains. To produce high-affinity peptides, we previously isolated autonomous 3-6 kDa knob domains from bovine antibodies. Here, we show that binding of four knob domain peptides elicits a range of effects on the clinically validated drug target complement C5. Allosteric mechanisms predominated, with one peptide selectively inhibiting C5 cleavage by the alternative pathway C5 convertase, revealing a targetable mechanistic difference between the classical and alternative pathway C5 convertases. Taking a hybrid biophysical approach, we present C5-knob domain co-crystal structures and, by solution methods, observed allosteric effects propagating >50 Å from the binding sites. This study expands the therapeutic scope of C5, presents new inhibitors, and introduces knob domains as new, low molecular weight antibody fragments, with therapeutic potential.


Antibodies are proteins produced by the immune system that can selectively bind to other molecules and modify their behaviour. Cows are highly equipped at fighting-off disease-causing microbes due to the unique shape of some of their antibodies. Unlike other jawed vertebrates, cows' antibodies contain an ultra-long loop region that contains a 'knob domain' which sticks out from the rest of the antibody. Recent research has shown that when detached, the knob domain behaves like an antibody fragment, and can independently bind to a range of different proteins. Antibody fragments are commonly developed in the laboratory to target proteins associated with certain diseases, such as arthritis and cancer. But it was unclear whether the knob domains from cows' antibodies could also have therapeutic potential. To investigate this, Macpherson et al. studied how knob domains attach to complement C5, a protein in the inflammatory pathway which is a drug target for various diseases, including severe COVID-19. The experiments identified various knob domains that bind to complement C5 and inhibits its activity by altering its structure or movement. Further tests studying the structure of these interactions, led to the discovery of a common mechanism by which inhibitors can modify the behaviour of this inflammatory protein. Complement C5 is involved in numerous molecular pathways in the immune system, which means many of the drugs developed to inhibit its activity can also leave patients vulnerable to infection. However, one of the knob domains identified by Macpherson et al. was found to reduce the activity of complement C5 in some pathways, whilst leaving other pathways intact. This could potentially reduce the risk of bacterial infections which sometimes arise following treatment with these types of inhibitors. These findings highlight a new approach for developing drug inhibitors for complement C5. Furthermore, the ability of knob domains to bind to multiple sites of complement C5 suggests that this fragment could be used to target proteins associated with other diseases.


Asunto(s)
Regulación Alostérica/efectos de los fármacos , Complemento C5/antagonistas & inhibidores , Descubrimiento de Drogas , Péptidos/química , Péptidos/farmacología , Animales , Bovinos , Complemento C5/química , Complemento C5/metabolismo , Simulación del Acoplamiento Molecular , Conformación Proteica/efectos de los fármacos
16.
PLoS One ; 15(12): e0242677, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33296386

RESUMEN

MORN (Membrane Occupation and Recognition Nexus) repeat proteins have a wide taxonomic distribution, being found in both prokaryotes and eukaryotes. Despite this ubiquity, they remain poorly characterised at both a structural and a functional level compared to other common repeats. In functional terms, they are often assumed to be lipid-binding modules that mediate membrane targeting. We addressed this putative activity by focusing on a protein composed solely of MORN repeats-Trypanosoma brucei MORN1. Surprisingly, no evidence for binding to membranes or lipid vesicles by TbMORN1 could be obtained either in vivo or in vitro. Conversely, TbMORN1 did interact with individual phospholipids. High- and low-resolution structures of the MORN1 protein from Trypanosoma brucei and homologous proteins from the parasites Toxoplasma gondii and Plasmodium falciparum were obtained using a combination of macromolecular crystallography, small-angle X-ray scattering, and electron microscopy. This enabled a first structure-based definition of the MORN repeat itself. Furthermore, all three structures dimerised via their C-termini in an antiparallel configuration. The dimers could form extended or V-shaped quaternary structures depending on the presence of specific interface residues. This work provides a new perspective on MORN repeats, showing that they are protein-protein interaction modules capable of mediating both dimerisation and oligomerisation.


Asunto(s)
Lípidos/química , Proteínas Protozoarias/química , Secuencias Repetitivas de Aminoácido , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Cristalografía por Rayos X , Citosol/metabolismo , Liposomas , Fenotipo , Fosfolípidos/metabolismo , Unión Proteica , Multimerización de Proteína , Proteínas Protozoarias/ultraestructura , Proteínas Recombinantes/metabolismo , Trypanosoma brucei brucei/metabolismo
17.
Nat Commun ; 11(1): 5588, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33149112

RESUMEN

The coronavirus SARS-CoV-2 is the cause of the ongoing COVID-19 pandemic. Therapeutic neutralizing antibodies constitute a key short-to-medium term approach to tackle COVID-19. However, traditional antibody production is hampered by long development times and costly production. Here, we report the rapid isolation and characterization of nanobodies from a synthetic library, known as sybodies (Sb), that target the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. Several binders with low nanomolar affinities and efficient neutralization activity were identified of which Sb23 displayed high affinity and neutralized pseudovirus with an IC50 of 0.6 µg/ml. A cryo-EM structure of the spike bound to Sb23 showed that Sb23 binds competitively in the ACE2 binding site. Furthermore, the cryo-EM reconstruction revealed an unusual conformation of the spike where two RBDs are in the 'up' ACE2-binding conformation. The combined approach represents an alternative, fast workflow to select binders with neutralizing activity against newly emerging viruses.


Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Pandemias/prevención & control , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/prevención & control , Anticuerpos de Dominio Único/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2 , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19 , Microscopía por Crioelectrón , Humanos , Pruebas de Neutralización , Unión Proteica , Conformación Proteica , Dominios Proteicos/inmunología , Receptores Virales/metabolismo , SARS-CoV-2
18.
Proc Natl Acad Sci U S A ; 117(1): 317-327, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31852826

RESUMEN

Host-pathogen interactions are central to understanding microbial pathogenesis. The staphylococcal pore-forming cytotoxins hijack important immune molecules but little is known about the underlying molecular mechanisms of cytotoxin-receptor interaction and host specificity. Here we report the structures of a staphylococcal pore-forming cytotoxin, leukocidin GH (LukGH), in complex with its receptor (the α-I domain of complement receptor 3, CD11b-I), both for the human and murine homologs. We observe 2 binding interfaces, on the LukG and the LukH protomers, and show that human CD11b-I induces LukGH oligomerization in solution. LukGH binds murine CD11b-I weakly and is inactive toward murine neutrophils. Using a LukGH variant engineered to bind mouse CD11b-I, we demonstrate that cytolytic activity does not only require binding but also receptor-dependent oligomerization. Our studies provide an unprecedented insight into bicomponent leukocidin-host receptor interaction, enabling the development of antitoxin approaches and improved animal models to explore these approaches.


Asunto(s)
Proteínas Bacterianas/metabolismo , Antígeno CD11b/metabolismo , Leucocidinas/metabolismo , Antígeno de Macrófago-1/metabolismo , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/inmunología , Animales , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/ultraestructura , Antígeno CD11b/inmunología , Antígeno CD11b/ultraestructura , Línea Celular , Membrana Celular/metabolismo , Cristalografía por Rayos X , Humanos , Leucocidinas/inmunología , Antígeno de Macrófago-1/inmunología , Antígeno de Macrófago-1/ultraestructura , Ratones , Modelos Moleculares , Neutrófilos/citología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Dominios Proteicos/inmunología , Multimerización de Proteína/inmunología , Conejos , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Especificidad de la Especie , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/patogenicidad
19.
IUCrJ ; 6(Pt 5): 948-957, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31576227

RESUMEN

The X-chromosome-linked inhibitor of apoptosis protein (XIAP) is a multidomain protein whose main function is to block apoptosis by caspase inhibition. XIAP is also involved in other signalling pathways, including NF-κB activation and copper homeostasis. XIAP is overexpressed in tumours, potentiating cell survival and resistance to chemotherapeutics, and has therefore become an important target for the treatment of malignancy. Despite the fact that the structure of each single domain is known, the conformation of the full-length protein has never been determined. Here, the first structural model of the full-length XIAP dimer, determined by an integrated approach using nuclear magnetic resonance, small-angle X-ray scattering and electron paramagnetic resonance data, is presented. It is shown that XIAP adopts a compact and relatively rigid conformation, implying that the spatial arrangement of its domains must be taken into account when studying the interactions with its physiological partners and in developing effective inhibitors.

20.
Biophys Chem ; 253: 106226, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31376619

RESUMEN

The quaternary structures of insulin glargine and glulisine under formulation conditions and upon dilution using placebo or water were investigated using synchrotron small-angle X-ray scattering. Our results revealed that insulin glulisine in Apidra® is predominantly hexameric in solution with significant fractions of dodecamers and monomers. Upon dilution with placebo, this equilibrium shifts towards monomers. Insulin glargine in Lantus® and Toujeo® is present in a stable hexamer/dimer equilibrium, which is hardly affected by dilution with water down to 1 mg/ml insulin concentration. The results provide exclusive insight into the quaternary structure and thus the association/dissociation properties of the two insulin analogues in marketed formulations.


Asunto(s)
Hipoglucemiantes/química , Insulina Glargina/química , Insulina/análogos & derivados , Humanos , Insulina/química , Modelos Moleculares , Estructura Cuaternaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA