Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 78
1.
Prostaglandins Other Lipid Mediat ; 173: 106850, 2024 Aug.
Article En | MEDLINE | ID: mdl-38735559

Midlife metabolic syndrome (MetS) is associated with cognitive impairment in late life. The mechanism of delayed MetS-related cognitive dysfunction (MetSCD) is not clear, but it has been linked to systemic inflammation and chronic cerebral microangiopathy. Currently there is no treatment for late life MetSCD other than early risk factor modification. We investigated the effect of soluble epoxide hydrolase (sEH) inhibitor 4-[[trans-4-[[(tricyclo[3.3.1.13,7]dec-1-ylamino)carbonyl]amino]cyclohexyl]oxy]-benzoic acid (t-AUCB) on cognitive performance, cerebral blood flow (CBF), and central and peripheral inflammation in the high-fat diet (HFD) model of MetS in mice. At 6 weeks of age, male mice were randomly assigned to receive either HFD or standard chow (STD) for 6 months. Mice received either t-AUCB or vehicle for 4 weeks. Cognitive performance was evaluated, followed by CBF measurement using magnetic resonance imaging (MRI). At the end of the study, blood was collected for measurement of eicosanoids and inflammatory cytokines. The brains were then analyzed by immunohistochemistry for glial activation markers. The HFD caused a significant impairment in novel object recognition. Treatment with t-AUCB increased plasma levels of 14,15-EET, prevented this cognitive impairment and modified hippocampal glial activation and plasma cytokine levels, without affecting CBF in mice on HFD. In conclusion, sEH inhibition for four weeks prevents cognitive deficits in mice on chronic HFD by modulating inflammatory processes without affecting CBF.


Cognitive Dysfunction , Disease Models, Animal , Epoxide Hydrolases , Inflammation , Metabolic Syndrome , Animals , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/metabolism , Metabolic Syndrome/drug therapy , Metabolic Syndrome/complications , Metabolic Syndrome/pathology , Mice , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology , Cognitive Dysfunction/metabolism , Male , Inflammation/drug therapy , Inflammation/pathology , Mice, Inbred C57BL , Benzoates/pharmacology , Benzoates/therapeutic use , Cerebrovascular Circulation/drug effects , Diet, High-Fat/adverse effects , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use
2.
Sci Rep ; 14(1): 5808, 2024 03 09.
Article En | MEDLINE | ID: mdl-38461359

Prenatal cannabis use is associated with adverse offspring neurodevelopmental outcomes, however the underlying mechanisms are relatively unknown. We sought to determine the impact of chronic delta-9-tetrahydrocannabinol (THC) exposure on fetal neurodevelopment in a rhesus macaque model using advanced imaging combined with molecular and tissue studies. Animals were divided into two groups, control (n = 5) and THC-exposed (n = 5), which received a daily THC edible pre-conception and throughout pregnancy. Fetal T2-weighted MRI was performed at gestational days 85 (G85), G110, G135 and G155 to assess volumetric brain development. At G155, animals underwent cesarean delivery with collection of fetal cerebrospinal fluid (CSF) for microRNA (miRNA) studies and fetal tissue for histologic analysis. THC exposure was associated with significant age by sex interactions in brain growth, and differences in fetal brain histology suggestive of brain dysregulation. Two extracellular vesicle associated-miRNAs were identified in THC-exposed fetal CSF; pathway analysis suggests that these miRNAs are associated with dysregulated axonal guidance and netrin signaling. This data is indicative of subtle molecular changes consistent with the observed histological data, suggesting a potential role for fetal miRNA regulation by THC. Further studies are needed to determine whether these adverse findings correlate with long-term offspring neurodevelopmental health.


Cannabis , MicroRNAs , Pregnancy , Animals , Female , Macaca mulatta , Dronabinol/adverse effects , Fetus , Cannabis/adverse effects , MicroRNAs/genetics
3.
Sci Rep ; 12(1): 8835, 2022 05 25.
Article En | MEDLINE | ID: mdl-35614104

The microcirculation serves crucial functions in adult heart, distinct from those carried out by epicardial vessels. Microvessels are governed by unique regulatory mechanisms, impairment of which leads to microvessel-specific pathology. There are few treatment options for patients with microvascular heart disease, primarily due to limited understanding of underlying pathology. High throughput mRNA sequencing and protein expression profiling in specific cells can improve our understanding of microvessel biology and disease at the molecular level. Understanding responses of individual microvascular cells to the same physiological or pathophysiological stimuli requires the ability to isolate the specific cell types that comprise the functional units of the microcirculation in the heart, preferably from the same heart, to ensure that different cells have been exposed to the same in-vivo conditions. We developed an integrated process for simultaneous isolation and culture of the main cell types comprising the microcirculation in adult mouse heart: endothelial cells, pericytes, and vascular smooth muscle cells. These cell types were characterized with isobaric labeling quantitative proteomics and mRNA sequencing. We defined microvascular cell proteomes, identified novel protein markers, and confirmed established cell-specific markers. Our results allow identification of unique markers and regulatory proteins that govern microvascular physiology and pathology.


Endothelial Cells , Pericytes , Animals , Endothelial Cells/metabolism , Mice , Microcirculation , Muscle, Smooth, Vascular/metabolism , Pericytes/metabolism , Proteomics , RNA, Messenger/genetics , RNA, Messenger/metabolism
4.
Alzheimers Res Ther ; 14(1): 59, 2022 04 26.
Article En | MEDLINE | ID: mdl-35473943

BACKGROUND: Slowed clearance of amyloid ß (Aß) is believed to underlie the development of Aß plaques that characterize Alzheimer's disease (AD). Aß is cleared in part by the glymphatic system, a brain-wide network of perivascular pathways that supports the exchange of cerebrospinal and brain interstitial fluid. Glymphatic clearance, or perivascular CSF-interstitial fluid exchange, is dependent on the astroglial water channel aquaporin-4 (AQP4) as deletion of Aqp4 in mice slows perivascular exchange, impairs Aß clearance, and promotes Aß plaque formation. METHODS: To define the role of AQP4 in human AD, we evaluated AQP4 expression and localization in a human post mortem case series. We then used the α-syntrophin (Snta1) knockout mouse model which lacks perivascular AQP4 localization to evaluate the effect that loss of perivascular AQP4 localization has on glymphatic CSF tracer distribution. Lastly, we crossed this line into a mouse model of amyloidosis (Tg2576 mice) to evaluate the effect of AQP4 localization on amyloid ß levels. RESULTS: In the post mortem case series, we observed that the perivascular localization of AQP4 is reduced in frontal cortical gray matter of subjects with AD compared to cognitively intact subjects. This decline in perivascular AQP4 localization was associated with increasing Aß and neurofibrillary pathological burden, and with cognitive decline prior to dementia onset. In rodent studies, Snta1 gene deletion slowed CSF tracer influx and interstitial tracer efflux from the mouse brain and increased amyloid ß levels. CONCLUSIONS: These findings suggest that the loss of perivascular AQP4 localization may contribute to the development of AD pathology in human populations.


Alzheimer Disease , Aquaporin 4/metabolism , Glymphatic System , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Aquaporin 4/genetics , Glymphatic System/metabolism , Glymphatic System/pathology , Humans , Mice , Plaque, Amyloid/pathology
5.
Am J Physiol Cell Physiol ; 322(5): C1011-C1021, 2022 05 01.
Article En | MEDLINE | ID: mdl-35385329

Arachidonic acid metabolites epoxyeicosatrienoates (EETs) and hydroxyeicosatetraenoates (HETEs) are important regulators of myocardial blood flow and coronary vascular resistance (CVR), but their mechanisms of action are not fully understood. We applied a chemoproteomics strategy using a clickable photoaffinity probe to identify G protein-coupled receptor 39 (GPR39) as a microvascular smooth muscle cell (mVSMC) receptor selective for two endogenous eicosanoids, 15-HETE and 14,15-EET, which act on the receptor to oppose each other's activity. The former increases mVSMC intracellular calcium via GPR39 and augments coronary microvascular resistance, and the latter inhibits these actions. Furthermore, we find that the efficacy of both ligands is potentiated by zinc acting as an allosteric modulator. Measurements of coronary perfusion pressure (CPP) in GPR39-null hearts using the Langendorff preparation indicate the receptor senses these eicosanoids to regulate microvascular tone. These results implicate GPR39 as an eicosanoid receptor and key regulator of myocardial tissue perfusion. Our findings will have a major impact on understanding the roles of eicosanoids in cardiovascular physiology and disease and provide an opportunity for the development of novel GPR39-targeting therapies for cardiovascular disease.


Cytochrome P-450 Enzyme System , Eicosanoids , Arachidonic Acid/metabolism , Coronary Vessels/metabolism , Cytochrome P-450 Enzyme System/metabolism , Eicosanoids/analysis , Eicosanoids/metabolism , Eicosanoids/pharmacology , Vascular Resistance
6.
Neurotoxicology ; 88: 155-167, 2022 01.
Article En | MEDLINE | ID: mdl-34801587

Spinally-administered local anesthetics provide effective perioperative anesthesia and/or analgesia for children of all ages. New preparations and drugs require preclinical safety testing in developmental models. We evaluated age-dependent efficacy and safety following 1 % preservative-free 2-chloroprocaine (2-CP) in juvenile Sprague-Dawley rats. Percutaneous lumbar intrathecal 2-CP was administered at postnatal day (P)7, 14 or 21. Mechanical withdrawal threshold pre- and post-injection evaluated the degree and duration of sensory block, compared to intrathecal saline and naive controls. Tissue analyses one- or seven-days following injection included histopathology of spinal cord, cauda equina and brain sections, and quantification of neuronal apoptosis and glial reactivity in lumbar spinal cord. Following intrathecal 2-CP or saline at P7, outcomes assessed between P30 and P72 included: spinal reflex sensitivity (hindlimb thermal latency, mechanical threshold); social approach (novel rat versus object); locomotor activity and anxiety (open field with brightly-lit center); exploratory behavior (rearings, holepoking); sensorimotor gating (acoustic startle, prepulse inhibition); and learning (Morris Water Maze). Maximum tolerated doses of intrathecal 2-CP varied with age (1.0 µL/g at P7, 0.75 µL/g at P14, 0.5 µL/g at P21) and produced motor and sensory block for 10-15 min. Tissue analyses found no significant differences across intrathecal 2-CP, saline or naïve groups. Adult behavioral measures showed expected sex-dependent differences, that did not differ between 2-CP and saline groups. Single maximum tolerated in vivo doses of intrathecal 2-CP produced reversible spinal anesthesia in juvenile rodents without detectable evidence of developmental neurotoxicity. Current results cannot be extrapolated to repeated dosing or prolonged infusion.


Neurotoxicity Syndromes/etiology , Procaine/analogs & derivatives , Animals , Caspase 3/metabolism , Cauda Equina/anatomy & histology , Cauda Equina/drug effects , Female , Injections, Spinal , Male , Morris Water Maze Test/drug effects , Motor Activity/drug effects , Procaine/administration & dosage , Procaine/toxicity , Rats , Rats, Sprague-Dawley , Sensory Gating/drug effects
7.
J Neurol Surg Rep ; 82(4): e38-e42, 2021 Oct.
Article En | MEDLINE | ID: mdl-34877245

Introduction Meningiomas are more common in females and frequently express progesterone and estrogen receptors. Recent studies have revealed a high incidence of meningiomas in situations in which estrogen/progesterone levels are increased such as pregnancy, gender reassignment therapy, and fertility treatment. While the relationship remains unclear and controversial, these findings suggest exposure to high levels of endogenous or exogenous hormones may increase the risk of developing a meningioma. Patients and Methods A 40-year-old female with a history of endometriosis treated with chronic progesterone therapy presented with a visual deficit and was found to have multiple meningiomas, which regressed after cessation of exogenous progesterone. Conclusion A history of chronic hormone therapy should be included when evaluating patients diagnosed with meningiomas, particularly at a younger age and with multiple meningiomas. Cessation of exogenous progesterone resulting in regression of meningiomas suggests a direct action of progesterone on growth. Future studies are warranted to better elucidate this relationship.

8.
Alzheimers Dement (N Y) ; 7(1): e12214, 2021.
Article En | MEDLINE | ID: mdl-34692987

INTRODUCTION: The pathogenesis of vascular cognitive impairment (VCI) is not fully understood. GPR39, an orphan G-protein coupled receptor, is implicated in neurological disorders but its role in VCI is unknown. METHODS: We performed GPR39 immunohistochemical analysis in post mortem brain samples from mild cognitive impairment (MCI) and control subjects. DNA was analyzed for GPR39 single nucleotide polymorphisms (SNPs), and correlated with white matter hyperintensity (WMH) burden on pre mortem magnetic resonance imaging. RESULTS: GPR39 is expressed in aged human dorsolateral prefrontal cortex, localized to microglia and peri-capillary cells resembling pericytes. GPR39-capillary colocalization, and density of GPR39-expressing microglia was increased in aged brains compared to young. SNP distribution was equivalent between groups; however, homozygous SNP carriers were present only in the MCI group, and had higher WMH volume than wild-type or heterozygous SNP carriers. DISCUSSION: GPR39 may play a role in aging-related VCI, and may serve as a therapeutic target and biomarker for the risk of developing VCI.

9.
Restor Neurol Neurosci ; 39(5): 329-338, 2021.
Article En | MEDLINE | ID: mdl-34542046

BACKGROUND/OBJECTIVE: Peripheral-nerve blocks (PNBs) using continuous-infusion of local anesthetics are used to provide perioperative analgesia. Yet little research exists to characterize the histopathological effects of continuous long-duration PNBs. Herein we test the hypothesis that continuous peri-neural bupivacaine infusion (3-day vs. 7-day infusion) contributes to histologic injury in a duration-dependent manner using an in vivo model of rat sciatic nerves. METHODS: We placed indwelling catheters in 22 rats for infusion with low-dose (0.5mg/kg/hr) bupivacaine or normal saline proximal to the right sciatic nerves for 3 or 7 consecutive days. Hind-limb analgesia was measured using Von-Frey nociceptive testing. At infusion end, rats were sacrificed, bilateral nerves were sectioned and stained with hematoxylin and eosin and CD68 for evaluation of inflammatory response, and eriochrome to assess damage to myelin. RESULTS: Animals receiving continuous infusion of bupivacaine maintained analgesia as demonstrated by significant decrease (50% on average) in nociceptive response in bupivacaine-infused limbs across time points. Both 7-day saline and bupivacaine-infused sciatic nerves showed significantly-increased inflammation by H&E staining compared to untreated native nerve controls (P = 0.0001, P < 0.0001). Extent of inflammation did not vary significantly based on infusate (7-day saline vs. 7-day bupivacaine P > 0.99) or duration (3-day bupivacaine vs 7-day bupivacaine P > 0.99). No significant change in sciatic nerve myelin was found in bupivacaine-infused animals compared to saline-infused controls, regardless of duration. CONCLUSIONS: Long-duration (7-day) bupivacaine infusion provided durable post-operative analgesia, yet contributed to equivalent neural inflammation as short duration (3-day) infusion of bupivacaine or saline with no evidence of demyelination.


Bupivacaine , Nerve Block , Animals , Axons , Bupivacaine/pharmacology , Myelin Sheath , Rats , Rats, Sprague-Dawley , Sciatic Nerve/pathology , Sciatic Nerve/physiology
10.
Br J Anaesth ; 127(3): 447-457, 2021 Sep.
Article En | MEDLINE | ID: mdl-34266661

BACKGROUND: Infant anaesthesia causes acute brain cell apoptosis, and later in life cognitive deficits and behavioural alterations, in non-human primates (NHPs). Various brain injuries and neurodegenerative conditions are characterised by chronic astrocyte activation (astrogliosis). Glial fibrillary acidic protein (GFAP), an astrocyte-specific protein, increases during astrogliosis and remains elevated after an injury. Whether infant anaesthesia is associated with a sustained increase in GFAP is unknown. We hypothesised that GFAP is increased in specific brain areas of NHPs 2 yr after infant anaesthesia, consistent with prior injury. METHODS: Eight 6-day-old NHPs per group were exposed to 5 h isoflurane once (1×) or three times (3×), or to room air as a control (Ctr). Two years after exposure, their brains were assessed for GFAP density changes in the primary visual cortex (V1), perirhinal cortex (PRC), hippocampal subiculum, amygdala, and orbitofrontal cortex (OFC). We also assessed concomitant microglia activation and hippocampal neurogenesis. RESULTS: Compared with controls, GFAP densities in V1 were increased in exposed groups (Ctr: 0.208 [0.085-0.427], 1×: 0.313 [0.108-0.533], 3×: 0.389 [0.262-0.652]), whereas the density of activated microglia was unchanged. In addition, GFAP densities were increased in the 3× group in the PRC and the subiculum, and in both exposure groups in the amygdala, but there was no increase in the OFC. There were no differences in hippocampal neurogenesis among groups. CONCLUSIONS: Two years after infant anaesthesia, NHPs show increased GFAP without concomitant microglia activation in specific brain areas. These long-lasting structural changes in the brain caused by infant anaesthesia exposure may be associated with functional alterations at this age.


Anesthesia, Inhalation/adverse effects , Anesthetics, Inhalation/toxicity , Brain/drug effects , Gliosis/chemically induced , Isoflurane/toxicity , Microglia/drug effects , Administration, Inhalation , Age Factors , Anesthetics, Inhalation/administration & dosage , Animals , Animals, Newborn , Apoptosis/drug effects , Brain/metabolism , Brain/pathology , Calcium-Binding Proteins/metabolism , Female , Glial Fibrillary Acidic Protein/metabolism , Gliosis/metabolism , Gliosis/pathology , Isoflurane/administration & dosage , Macaca mulatta , Male , Microfilament Proteins/metabolism , Microglia/metabolism , Microglia/pathology , Time Factors
11.
Acta Neuropathol Commun ; 8(1): 151, 2020 08 28.
Article En | MEDLINE | ID: mdl-32859279

The FGFR1 gene encoding fibroblast growth factor receptor 1 has emerged as a frequently altered oncogene in the pathogenesis of multiple low-grade neuroepithelial tumor (LGNET) subtypes including pilocytic astrocytoma, dysembryoplastic neuroepithelial tumor (DNT), rosette-forming glioneuronal tumor (RGNT), and extraventricular neurocytoma (EVN). These activating FGFR1 alterations in LGNET can include tandem duplication of the exons encoding the intracellular tyrosine kinase domain, in-frame gene fusions most often with TACC1 as the partner, or hotspot missense mutations within the tyrosine kinase domain (either at p.N546 or p.K656). However, the specificity of these different FGFR1 events for the various LGNET subtypes and accompanying genetic alterations are not well defined. Here we performed comprehensive genomic and epigenomic characterization on a diverse cohort of 30 LGNET with FGFR1 alterations. We identified that RGNT harbors a distinct epigenetic signature compared to other LGNET with FGFR1 alterations, and is uniquely characterized by FGFR1 kinase domain hotspot missense mutations in combination with either PIK3CA or PIK3R1 mutation, often with accompanying NF1 or PTPN11 mutation. In contrast, EVN harbors its own distinct epigenetic signature and is characterized by FGFR1-TACC1 fusion as the solitary pathogenic alteration. Additionally, DNT and pilocytic astrocytoma are characterized by either kinase domain tandem duplication or hotspot missense mutations, occasionally with accompanying NF1 or PTPN11 mutation, but lacking the accompanying PIK3CA or PIK3R1 mutation that characterizes RGNT. The glial component of LGNET with FGFR1 alterations typically has a predominantly oligodendroglial morphology, and many of the pilocytic astrocytomas with FGFR1 alterations lack the biphasic pattern, piloid processes, and Rosenthal fibers that characterize pilocytic astrocytomas with BRAF mutation or fusion. Together, this analysis improves the classification and histopathologic stratification of LGNET with FGFR1 alterations.


Neoplasms, Neuroepithelial/classification , Neoplasms, Neuroepithelial/genetics , Neoplasms, Neuroepithelial/pathology , Receptor, Fibroblast Growth Factor, Type 1/genetics , Adolescent , Adult , Aged , Brain Neoplasms/classification , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Child , Female , Humans , Male , Middle Aged , Mutation , Spinal Cord Neoplasms/classification , Spinal Cord Neoplasms/genetics , Spinal Cord Neoplasms/pathology , Young Adult
12.
Neurotoxicology ; 79: 75-83, 2020 07.
Article En | MEDLINE | ID: mdl-32387222

BACKGROUND: Preclinical studies suggest that exposures of infant animals to general anesthetics cause acute neurotoxicity and affect their neurobehavioral development representing a potential risk to human infants undergoing anesthesia. Alternative or mitigating strategies to counteract such adverse effects are desirable. Dexmedetomidine (DEX) is a clinically established sedative with potential neuroprotective properties. DEX ameliorates experimental brain injury as well as neurotoxicity caused by anesthetic doses of sevoflurane (SEVO) or other general anesthetics in infant animals. However, it is unknown whether DEX also is beneficial when given together with lower doses of these drugs. Here we tested the hypothesis that DEX co-administration with a sub-anesthetic dose of SEVO reduces responsiveness to external stimuli while also protecting against SEVO-induced brain cell apoptosis. METHOD: Rats were exposed on postnatal day 7 for 6 h to SEVO 1.1, 1.8, or 2.5% and were given intraperitoneal injections of saline or DEX at different doses (1-25 µg/kg) three times during the exposure. Responsiveness to external stimuli, respiratory rates, and blood gases were assessed. Apoptosis was determined in cortical and subcortical brain areas by activated caspase-3 immunohistochemistry. RESULTS: Rats exposed to SEVO 1.1% alone were sedated but still responsive to external stimuli whereas those exposed to SEVO 1.8% reached complete unresponsiveness. SEVO-induced brain cell apoptosis increased dose-dependently, with SEVO 1.1% causing a small increase in apoptosis above that in controls. Co-administration of DEX at 1 µg/kg did not alter the responsiveness to stimuli nor the apoptosis induced by SEVO 1.1%. In contrast, co-administration of DEX at 5 µg/kg or higher with SEVO 1.1% reduced responsiveness but potentiated apoptosis. CONCLUSIONS: In the neonatal rat model, co-administration of a clinically relevant dose of DEX (1 µg/kg) with a sub-anesthetic dose of SEVO (1.1%) does not affect the neurotoxicity of the anesthetic while co-administration of higher doses of DEX with SEVO 1.1% potentiates it.


Adrenergic alpha-2 Receptor Agonists/toxicity , Anesthetics, Inhalation/toxicity , Apoptosis/drug effects , Brain/drug effects , Dexmedetomidine/toxicity , Neurotoxicity Syndromes/etiology , Sevoflurane/toxicity , Animals , Animals, Newborn , Brain/pathology , Brain/physiopathology , Dose-Response Relationship, Drug , Drug Synergism , Neurotoxicity Syndromes/pathology , Neurotoxicity Syndromes/physiopathology , Rats, Wistar , Respiratory Rate/drug effects , Sensory Thresholds/drug effects
13.
PLoS One ; 15(1): e0227676, 2020.
Article En | MEDLINE | ID: mdl-31935257

Zika virus infection during pregnancy is associated with miscarriage and with a broad spectrum of fetal and neonatal developmental abnormalities collectively known as congenital Zika syndrome (CZS). Symptomology of CZS includes malformations of the brain and skull, neurodevelopmental delay, seizures, joint contractures, hearing loss and visual impairment. Previous studies of Zika virus in pregnant rhesus macaques (Macaca mulatta) have described injury to the developing fetus and pregnancy loss, but neonatal outcomes following fetal Zika virus exposure have yet to be characterized in nonhuman primates. Herein we describe the presentation of rhesus macaque neonates with a spectrum of clinical outcomes, including one infant with CZS-like symptoms including cardiomyopathy, motor delay and seizure activity following maternal infection with Zika virus during the first trimester of pregnancy. Further characterization of this neonatal nonhuman primate model of gestational Zika virus infection will provide opportunities to evaluate the efficacy of pre- and postnatal therapeutics for gestational Zika virus infection and CZS.


Disease Models, Animal , Zika Virus Infection/veterinary , Zika Virus/pathogenicity , Animals , Cardiomyopathies/virology , Female , Fetus/virology , Macaca mulatta , Microcephaly/virology , Pregnancy , Pregnancy Complications, Infectious/veterinary , Pregnancy Complications, Infectious/virology , Pregnancy Trimester, First , Seizures/virology , Zika Virus Infection/virology
14.
J Am Soc Echocardiogr ; 33(2): 234-246, 2020 02.
Article En | MEDLINE | ID: mdl-31812549

BACKGROUND: Therapeutic ultrasound (TUS) has been used to lyse infarct-related coronary artery thrombus. There has been no study examining the effect of TUS specifically on myocardial microthromboemboli seen in acute myocardial infarction and acute coronary syndromes. The aim of this study was to test the hypothesis that TUS improves myocardial blood flow (MBF) and reduces infarct size (IS) in this situation by dissolving myocardial microthrombi. METHODS: An open-chest canine model of myocardial microthromboembolism was created by disrupting a thrombus in the left anterior descending coronary artery, and 1.05- and 0.25-MHz TUS (n = 7 each) delivered epicardially for 30 min was compared with control (n = 6). MBF and IS (as a percentage of left anterior descending coronary artery perfusion bed size) were measured 60 min after treatment. In addition, immunohistochemistry was performed to assess microthrombi, and histopathology was performed to define inflammation. RESULTS: Transmural, epicardial, and endocardial myocardial blood volume and MBF (measured using myocardial contrast echocardiography) and percentage wall thickening were significantly higher 60 min after receiving TUS compared with control. The ratio of IS to left anterior descending coronary artery perfusion bed size was significantly smaller (P = .03) in the 1.05-MHz TUS group (0.14 ± 0.04) compared with the control (0.31 ± 0.06, P = .04) and 0.25-MHz (0.36 ± 0.08) groups. MBF versus percentage wall thickening exhibited a linear relation (r = 0.65) in the control and 1.05-MHz TUS groups but not in the 0.25-MHz TUS group (r = 0.29). The presence of myocardial microemboli in vessels >10 µm in diameter was significantly reduced in the 1.05-MHz TUS group compared with the other two groups. The distribution and intensity of inflammation was higher in the 0.25-MHz TUS group compared with the other groups. CONCLUSIONS: TUS at 1.05 MHz is effective in restoring myocardial blood volume and MBF, thus reducing IS by clearing the microcirculation of microthrombi. IS reduction is not seen at 0.25 MHz, despite improvement in MBF, which may be related to the increased inflammation noted at this frequency. Because both acute myocardial infarction and acute coronary syndromes are associated with microthromboembolism, these results suggest that TUS could have a potential adjunctive role in the treatment of both conditions.


Blood Flow Velocity/physiology , Coronary Circulation/physiology , Coronary Thrombosis/prevention & control , Coronary Vessels/physiopathology , Microcirculation/physiology , Myocardial Infarction/therapy , Ultrasonic Therapy/methods , Animals , Coronary Thrombosis/complications , Coronary Thrombosis/diagnosis , Disease Models, Animal , Disease Progression , Dogs , Echocardiography/methods , Male , Myocardial Infarction/etiology , Myocardial Infarction/physiopathology , Treatment Outcome
15.
J Neuropathol Exp Neurol ; 79(1): 67-73, 2020 01 01.
Article En | MEDLINE | ID: mdl-31793986

Neuronal/mixed glioneuronal tumors are central nervous system neoplasms composed of neoplastic neuronal cell components or a mixture of glial and neuronal elements. They occur in cerebral hemispheres, posterior fossa, and spinal cord. Compared with other tumors at these locations, diencephalic neuronal/glioneuronal tumors are very rare and therefore not well characterized. We hereby performed clinicopathologic evaluation on 10 neuronal/glioneuronal tumors arising from the diencephalic region. Morphologically, these tumors resemble their histologic counterparts in other locations, except that lymphocytic infiltrates and microcalcifications are more common than Rosenthal fibers or eosinophilic granular bodies. The BRAFV600 mutation rate is 75%. Given the high percentage of samples being small biopsy specimens, the subtle histologic features and molecular findings greatly aided in establishing the pathologic diagnosis in several cases. At a median follow-up of 42 months, 71% of the tumors demonstrated radiological recurrence or progression, with median progression-free survival of 18 months. Recurrence/progression is observed in tumors across different histologic subtypes, necessitating additional therapies in 56% of the cases. Despite their bland histology, diencephalic neuronal/glioneuronal tumors are not clinically indolent. Their frequent recurrences warrant a close follow-up, and the prevalent BRAF mutation makes MAPK pathway inhibition a plausible treatment option when conventional therapies fail.


Brain Neoplasms/pathology , Diencephalon , Ganglioglioma/pathology , Ganglioneuroma/pathology , Neuroglia/pathology , Neurons/pathology , Adult , Brain Neoplasms/genetics , Brain Neoplasms/surgery , Child , Disease Progression , Female , Follow-Up Studies , Ganglioglioma/genetics , Ganglioglioma/surgery , Ganglioneuroma/genetics , Ganglioneuroma/surgery , Humans , Kaplan-Meier Estimate , Male , Mutation/genetics , Neoplasm Recurrence, Local , Progression-Free Survival , Proto-Oncogene Proteins B-raf/genetics , Treatment Outcome , Young Adult
16.
Am J Ophthalmol Case Rep ; 16: 100573, 2019 Dec.
Article En | MEDLINE | ID: mdl-31768472

PURPOSE: To describe the clinical findings of two patients with reversible ocular hypertension secondary to endogenous hypercortisolism. DESIGN: Retrospective, observational case series. SUBJECTS: A 65-year-old man (patient 1) and a 21-year-old woman (patient 2) were both found to have Cushing's syndrome after presentation to our clinic with elevated intraocular pressures (IOP). METHODS: Clinical histories, ophthalmic examinations including IOP measurements, optical coherence tomography of the retinal nerve fiber layer, visual field testing, magnetic resonance imaging and computerized tomography of two patients were reviewed between 2007 and 2019. OBSERVATIONS: Patient 1 demonstrated elevated IOP (maximum 26 mmHg OD and 22 mmHg OS) and bilateral disc edema. Following diagnosis of Cushing's syndrome, the patient underwent two pituitary resections and bilateral adrenalectomy, with subsequent resolution of his hypercortisolism and ocular hypertension (OHT). Patient 2 presented with blurred vision and found to have OHT (maximum 32 mmHg OU). Following diagnosis of Cushing's disease and two resections of her adrenocorticotropic hormone (ACTH) producing pituitary adenoma, her IOPs normalized. Both patients maintained normal IOPs after resolution of their endogenous hypercortisolism and discontinuation of topical IOP-lowering medication. CONCLUSIONS AND IMPORTANCE: Ocular hypertension induced by endogenous hypercortisolism is, in some cases, fully reversible following normalization of cortisol levels. These findings suggest that the physiologic changes to the trabecular meshwork induced by endogenous hypercortisolism may be fully reversible.

17.
Neuropathology ; 39(5): 389-393, 2019 Oct.
Article En | MEDLINE | ID: mdl-31435988

Rosette-forming glioneuronal tumor (RGNT) most commonly occurs adjacent to the fourth ventricle and therefore rarely presents with epilepsy. Recent reports describe RGNT occurrence in other anatomical locations with considerable morphologic and genetic overlap with the epilepsy-associated dysembryoplastic neuroepithelial tumor (DNET). Examples of RGNT or DNET with anaplastic change are rare, and typically occur in the setting of radiation treatment. We present the case of a 5-year-old girl with seizures, who underwent near total resection of a cystic temporal lobe lesion. Pathology showed morphologic and immunohistochemical features of RGNT, albeit with focally overlapping DNET-like patterns. Resections of residual or recurrent tumor were performed 1 year and 5 years after the initial resection, but no adjuvant radiation or chemotherapy was given. Ten years after the initial resection, surveillance imaging identified new and enhancing nodules, leading to another gross total resection. This specimen showed areas similar to the original tumor, but also high-grade foci with oligodendroglial morphology, increased cellularity, palisading necrosis, microvascular proliferation, and up to 13 mitotic figures per 10 high power fields. Ancillary studies the status by sequencing showed wild-type of the isocitrate dehydrogenase 1 (IDH1), IDH2, and human histone 3.3 (H3F3A) genes, and BRAF studies were negative for mutation or rearrangement. Fluorescence in situ hybridization (FISH) showed codeletion of 1p and 19q limited to the high-grade regions. By immunohistochemistry there was loss of nuclear alpha-thalassemia mental retardation syndrome, X-linked (ATRX) expression only in the high-grade region. Next-generation sequencing showed an fibroblast growth factor receptor receptor 1 (FGFR1) kinase domain internal tandem duplication in three resection specimens. ATRX mutation in the high-grade tumor was confirmed by sequencing which showed a frameshift mutation (p.R1427fs), while the apparent 1p/19q-codeletion by FISH was due to loss of chromosome arm 1p and only partial loss of 19q. Exceptional features of this case include the temporal lobe location, 1p/19q loss by FISH without true whole-arm codeletion, and anaplastic transformation associated with ATRX mutation without radiation or chemotherapy.


Brain Neoplasms/pathology , Cell Transformation, Neoplastic/genetics , Neoplasms, Neuroepithelial/pathology , Temporal Lobe/pathology , X-linked Nuclear Protein/genetics , Brain Neoplasms/complications , Brain Neoplasms/genetics , Child, Preschool , Epilepsy/etiology , Female , Humans , Mutation , Neoplasm Recurrence, Local/complications , Neoplasm Recurrence, Local/pathology , Neoplasms, Neuroepithelial/complications , Neoplasms, Neuroepithelial/genetics
19.
J Alzheimers Dis ; 66(4): 1587-1597, 2018.
Article En | MEDLINE | ID: mdl-30475760

Waste clearance from the brain parenchyma occurs along perivascular pathways. Enlargement of the perivascular space (ePVS) is associated with pathologic features of Alzheimer's disease (AD), although the mechanisms and implications of this dilation are unclear. Fluid exchange along the cerebral vasculature is dependent on the perivascular astrocytic water channel aquaporin-4 (AQP4) and loss of perivascular AQP4 localization is found in AD. We directly measured ePVS in postmortem samples of pathologically characterized tissue from participants who were cognitively intact or had AD or mixed dementia (vascular lesions with AD). We found that both AD and mixed dementia groups had significantly increased ePVS compared to cognitively intact subjects. In addition, we found increased global AQP4 expression of the AD group over both control and mixed dementia groups and a qualitative reduction in perivascular localization of AQP4 in the AD group. Among these cases, increasing ePVS burden was associated with the presence of tau and amyloid-ß pathology. These findings are consistent with the existing evidence of ePVS in AD and provide novel information regarding differences in AD and vascular dementia and the potential role of astroglial pathology in ePVS.


Alzheimer Disease/pathology , Aquaporin 4/metabolism , Astrocytes/pathology , Brain/pathology , Dementia, Vascular/pathology , Glymphatic System/pathology , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Astrocytes/metabolism , Brain/metabolism , Dementia, Vascular/metabolism , Female , Glymphatic System/metabolism , Humans , Male , Middle Aged
20.
Neuromuscul Disord ; 28(6): 491-501, 2018 06.
Article En | MEDLINE | ID: mdl-29754758

Over fifty missense mutations in the gene coding for valosin-containing protein (VCP) are associated with a unique autosomal dominant adult-onset progressive disease associated with combinations of proximo-distal inclusion body myopathy (IBM), Paget's disease of bone (PDB), frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS). We report the clinical, histological, and molecular findings in four new patients/families carrying novel VCP mutations: c.474 G > A (p.M158I); c.478 G > C (p.A160P); c.383G > C (p.G128A); and c.382G > T (p.G128C). Clinical features included myopathy, PDB, ALS and Parkinson's disease though frontotemporal dementia was not an associated feature in these families. One of the patients was noted to have severe manifestations of PDB and was suspected of having neoplasia. There were wide inter- and intra-familial variations making genotype-phenotype correlations difficult between the novel mutations and frequency or age of onset of IBM, PDB, FTD, ALS and Parkinson's disease. Increasing awareness of the full spectrum of clinical presentations will improve diagnosis of VCP-related diseases and thus proactively manage or prevent associated clinical features such as PDB.


Amyotrophic Lateral Sclerosis/genetics , Muscular Diseases/genetics , Mutation, Missense , Osteitis Deformans/genetics , Parkinson Disease/genetics , Valosin Containing Protein/genetics , Adult , Aged , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Pedigree
...