Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arthritis Rheumatol ; 76(1): 130-140, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37727908

RESUMEN

OBJECTIVE: Fibromyalgia (FM) is characterized by pervasive pain-related symptomatology and high levels of negative affect. Mind-body treatments such as cognitive behavioral therapy (CBT) appear to foster improvement in FM via reductions in pain-related catastrophizing, a set of negative, pain-amplifying cognitive and emotional processes. However, the neural underpinnings of CBT's catastrophizing-reducing effects remain uncertain. This randomized controlled mechanistic trial was designed to assess CBT's effects on pain catastrophizing and its underlying brain circuitry. METHODS: Of 114 enrolled participants, 98 underwent a baseline neuroimaging assessment and were randomized to 8 weeks of individual CBT or a matched FM education control (EDU) condition. RESULTS: Compared with EDU, CBT produced larger decreases in pain catastrophizing post treatment (P < 0.05) and larger reductions in pain interference and symptom impact. Decreases in pain catastrophizing played a significant role in mediating those functional improvements in the CBT group. At baseline, brain functional connectivity between the ventral posterior cingulate cortex (vPCC), a key node of the default mode network (DMN), and somatomotor and salience network regions was increased during catastrophizing thoughts. Following CBT, vPCC connectivity to somatomotor and salience network areas was reduced. CONCLUSION: Our results suggest clinically important and CBT-specific associations between somatosensory/motor- and salience-processing brain regions and the DMN in chronic pain. These patterns of connectivity may contribute to individual differences (and treatment-related changes) in somatic self-awareness. CBT appears to provide clinical benefits at least partially by reducing pain-related catastrophizing and producing adaptive alterations in DMN functional connectivity.


Asunto(s)
Dolor Crónico , Terapia Cognitivo-Conductual , Fibromialgia , Humanos , Fibromialgia/diagnóstico por imagen , Fibromialgia/terapia , Dolor Crónico/diagnóstico por imagen , Dolor Crónico/terapia , Dolor Crónico/psicología , Terapia Cognitivo-Conductual/métodos , Encéfalo/diagnóstico por imagen , Neuroimagen
2.
Proc Natl Acad Sci U S A ; 120(26): e2212910120, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37339198

RESUMEN

Social interactions such as the patient-clinician encounter can influence pain, but the underlying dynamic interbrain processes are unclear. Here, we investigated the dynamic brain processes supporting social modulation of pain by assessing simultaneous brain activity (fMRI hyperscanning) from chronic pain patients and clinicians during video-based live interaction. Patients received painful and nonpainful pressure stimuli either with a supportive clinician present (Dyadic) or in isolation (Solo). In half of the dyads, clinicians performed a clinical consultation and intake with the patient prior to hyperscanning (Clinical Interaction), which increased self-reported therapeutic alliance. For the other half, patient-clinician hyperscanning was completed without prior clinical interaction (No Interaction). Patients reported lower pain intensity in the Dyadic, relative to the Solo, condition. In Clinical Interaction dyads relative to No Interaction, patients evaluated their clinicians as better able to understand their pain, and clinicians were more accurate when estimating patients' pain levels. In Clinical Interaction dyads, compared to No Interaction, patients showed stronger activation of the dorsolateral and ventrolateral prefrontal cortex (dlPFC and vlPFC) and primary (S1) and secondary (S2) somatosensory areas (Dyadic-Solo contrast), and clinicians showed increased dynamic dlPFC concordance with patients' S2 activity during pain. Furthermore, the strength of S2-dlPFC concordance was positively correlated with self-reported therapeutic alliance. These findings support that empathy and supportive care can reduce pain intensity and shed light on the brain processes underpinning social modulation of pain in patient-clinician interactions. Our findings further suggest that clinicians' dlPFC concordance with patients' somatosensory processing during pain can be boosted by increasing therapeutic alliance.


Asunto(s)
Dolor Crónico , Empatía , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico , Corteza Cerebral , Imagen por Resonancia Magnética
3.
Arthritis Rheumatol ; 74(4): 700-710, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34725971

RESUMEN

OBJECTIVE: Abnormal central pain processing is a leading cause of pain in fibromyalgia (FM) and is perceptually characterized with the psychophysical measure of temporal summation of pain (TSP). TSP is the perception of increasingly greater pain in response to repetitive or tonic noxious stimuli. Previous neuroimaging studies have used static (i.e., summary) measures to examine the functional magnetic resonance imaging (fMRI) correlates of TSP in FM. However, functional brain activity rapidly and dynamically reorganizes over time, and, similarly, TSP is a temporally evolving process. This study was undertaken to demonstrate how a complete understanding of the neural circuitry supporting TSP in FM thus requires a dynamic measure that evolves over time. METHODS: We utilized novel methods for analyzing dynamic functional brain connectivity in patients with FM in order to examine how TSP-associated fluctuations are linked to the dynamic functional reconfiguration of the brain. In 84 FM patients and age- and sex-matched healthy controls, we collected high-temporal-resolution fMRI data during a resting state and during a state in which sustained cuff pressure pain was applied to the leg. RESULTS: FM patients experienced greater TSP than healthy controls (mean ± SD TSP score 17.93 ± 19.24 in FM patients versus 9.47 ± 14.06 in healthy controls; P = 0.028), but TSP scores varied substantially between patients. In the brain, the presence versus absence of TSP in patients with FM was marked by more sustained enmeshment between sensorimotor and salience networks during the pain period. Furthermore, dynamic enmeshment was noted solely in FM patients with high TSP, as interactions with all other brain networks were dampened during the pain period. CONCLUSION: This study elucidates the dynamic brain processes underlying facilitated central pain processing in FM. Our findings will enable future investigation of dynamic symptoms in FM.


Asunto(s)
Fibromialgia , Encéfalo , Fibromialgia/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Dolor/diagnóstico por imagen , Dolor/etiología , Dimensión del Dolor/métodos
4.
BMC Musculoskelet Disord ; 22(1): 871, 2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34641855

RESUMEN

OBJECTIVE: Chronic pain can have detrimental effects on quality of life and a profound impact on one's identity. The Pictorial Representation of Illness- and Self-Measure (PRISM), is a visual tool designed to measure the self-illness separation (SIS) that represents the degree of schema-enmeshment (i.e., the degree to which the self-schema and the illness-schema come to overlap). Our aim was to investigate the relationship between schema-enmeshment and pain-related outcomes in patients with fibromyalgia. METHODS: In this cross-sectional study, 114 patients with fibromyalgia completed self-report assessments of pain catastrophizing, pain severity and interference, impact of symptoms, anxiety, and depression. SIS was assessed using an iPad version of PRISM. Mediation analyses evaluated the mediating role of schema-enmeshment on the association between pain catastrophizing and fibromyalgia impact. RESULTS: A higher degree of schema-enmeshment was associated with greater pain catastrophizing, pain severity and interference, impact of symptoms, and depression. Moreover, a mediation analysis revealed that schema-enmeshment significantly mediated the association between pain catastrophizing and fibromyalgia impact (p < 0.001). CONCLUSIONS: Our results indicate that schema-enmeshment is associated with greater intrusiveness of chronic pain on everyday life, thereby posing significant limitations on the emotional and physical well-being of fibromyalgia patients. Schema-enmeshment also appears to partly account for the deleterious effect of pain catastrophizing on disease impact. The PRISM is a simple tool that may uniquely capture the extent to which chronic pain and illness infiltrates and affects one's self-concept.


Asunto(s)
Dolor Crónico , Fibromialgia , Catastrofización , Dolor Crónico/diagnóstico , Dolor Crónico/epidemiología , Estudios Transversales , Fibromialgia/diagnóstico , Fibromialgia/epidemiología , Humanos , Calidad de Vida
5.
Eur J Pain ; 25(9): 2050-2064, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34102707

RESUMEN

BACKGROUND: Fibromyalgia is a centralized multidimensional chronic pain syndrome, but its pathophysiology is not fully understood. METHODS: We applied 3D magnetic resonance spectroscopic imaging (MRSI), covering multiple cortical and subcortical brain regions, to investigate the association between neuro-metabolite (e.g. combined glutamate and glutamine, Glx; myo-inositol, mIno; and combined (total) N-acetylaspartate and N-acetylaspartylglutamate, tNAA) levels and multidimensional clinical/behavioural variables (e.g. pain catastrophizing, clinical pain severity and evoked pain sensitivity) in women with fibromyalgia (N = 87). RESULTS: Pain catastrophizing scores were positively correlated with Glx and tNAA levels in insular cortex, and negatively correlated with mIno levels in posterior cingulate cortex (PCC). Clinical pain severity was positively correlated with Glx levels in insula and PCC, and with tNAA levels in anterior midcingulate cortex (aMCC), but negatively correlated with mIno levels in aMCC and thalamus. Evoked pain sensitivity was negatively correlated with levels of tNAA in insular cortex, MCC, PCC and thalamus. CONCLUSIONS: These findings support single voxel placement targeting nociceptive processing areas in prior 1 H-MRS studies, but also highlight other areas not as commonly targeted, such as PCC, as important for chronic pain pathophysiology. Identifying target brain regions linked to multidimensional symptoms of fibromyalgia (e.g. negative cognitive/affective response to pain, clinical pain, evoked pain sensitivity) may aid the development of neuromodulatory and individualized therapies. Furthermore, efficient multi-region sampling with 3D MRSI could reduce the burden of lengthy scan time for clinical research applications of molecular brain-based mechanisms supporting multidimensional aspects of fibromyalgia. SIGNIFICANCE: This large N study linked brain metabolites and pain features in fibromyalgia patients, with a better spatial resolution and brain coverage, to understand a molecular mechanism underlying pain catastrophizing and other aspects of pain transmission. Metabolite levels in self-referential cognitive processing area as well as pain-processing regions were associated with pain outcomes. These results could help the understanding of its pathophysiology and treatment strategies for clinicians.


Asunto(s)
Dolor Crónico , Fibromialgia , Encéfalo/diagnóstico por imagen , Dolor Crónico/diagnóstico por imagen , Femenino , Fibromialgia/diagnóstico por imagen , Ácido Glutámico , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética
6.
Pain ; 162(5): 1352-1363, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33230008

RESUMEN

ABSTRACT: Pain catastrophizing is prominent in chronic pain conditions such as fibromyalgia and has been proposed to contribute to the development of pain widespreadness. However, the brain mechanisms responsible for this association are unknown. We hypothesized that increased resting salience network (SLN) connectivity to nodes of the default mode network (DMN), representing previously reported pain-linked cross-network enmeshment, would be associated with increased pain catastrophizing and widespreadness across body sites. We applied functional magnetic resonance imaging (fMRI) and digital pain drawings (free-hand drawing over a body outline, analyzed using conventional software for multivoxel fMRI analysis) to investigate precisely quantified measures of pain widespreadness and the associations between pain catastrophizing (Pain Catastrophizing Scale), resting brain network connectivity (Dual-regression Independent Component Analysis, 6-minute multiband accelerated fMRI), and pain widespreadness in fibromyalgia patients (N = 79). Fibromyalgia patients reported pain in multiple body areas (most frequently the spinal region, from the lower back to the neck), with moderately high pain widespreadness (mean ± SD: 26.1 ± 24.1% of total body area), and high pain catastrophizing scale scores (27.0 ± 21.9, scale range: 0-52), which were positively correlated (r = 0.26, P = 0.02). A whole-brain regression analysis focused on SLN connectivity indicated that pain widespreadness was also positively associated with SLN connectivity to the posterior cingulate cortex, a key node of the DMN. Moreover, we found that SLN-posterior cingulate cortex connectivity statistically mediated the association between pain catastrophizing and pain widespreadness (P = 0.01). In conclusion, we identified a putative brain mechanism underpinning the association between greater pain catastrophizing and a larger spatial extent of body pain in fibromyalgia, implicating a role for brain SLN-DMN cross-network enmeshment in mediating this association.


Asunto(s)
Fibromialgia , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Catastrofización/diagnóstico por imagen , Fibromialgia/complicaciones , Fibromialgia/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética
7.
Elife ; 72018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29555019

RESUMEN

In placebo hypoalgesia research, the strength of treatment expectations and experiences are key components. However, the reliability or precision of expectations had been mostly ignored although being a likely source for interindividual differences. In the present study, we adopted a Bayesian framework, naturally combining expectation magnitudes and precisions. This postulates that expectations (prior) are integrated with incoming nociceptive information (likelihood) and both are weighted by their relative precision to form the pain percept and placebo effect. Sixty-two healthy subjects received heat pain during fMRI. Placebo effects were more pronounced in subjects with more precise treatment expectations and correlated positively with the relative precision of the prior expectation. Neural correlates of this precision were observed in the periaqueductal gray and the rostral ventromedial medulla, indicating that already at the level of the brainstem the precision of an expectation can influence pain perception presenting strong evidence for Bayesian integration in placebo hypoalgesia.


Asunto(s)
Teorema de Bayes , Percepción del Dolor/fisiología , Dolor/fisiopatología , Sustancia Gris Periacueductal/fisiopatología , Efecto Placebo , Adulto , Algoritmos , Analgesia/métodos , Mapeo Encefálico , Método Doble Ciego , Humanos , Imagen por Resonancia Magnética , Masculino , Bulbo Raquídeo/diagnóstico por imagen , Bulbo Raquídeo/fisiopatología , Modelos Neurológicos , Dolor/diagnóstico , Dolor/diagnóstico por imagen , Sustancia Gris Periacueductal/diagnóstico por imagen , Adulto Joven
8.
Hum Brain Mapp ; 36(2): 744-55, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25324216

RESUMEN

OBJECTIVES: Anticipatory processes prepare the organism for upcoming experiences. The aim of this study was to investigate neural responses related to anticipation and processing of painful stimuli occurring with different levels of uncertainty. EXPERIMENTAL DESIGN: Twenty-five participants (13 females) took part in an electroencephalography and functional magnetic resonance imaging (fMRI) experiment at separate times. A visual cue announced the occurrence of an electrical painful or nonpainful stimulus, delivered with certainty or uncertainty (50% chance), at some point during the following 15 s. PRINCIPAL OBSERVATIONS: During the first 2 s of the anticipation phase, a strong effect of uncertainty was reflected in a pronounced frontal stimulus-preceding negativity (SPN) and increased fMRI activation in higher visual processing areas. In the last 2 s before stimulus delivery, we observed stimulus-specific preparatory processes indicated by a centroparietal SPN and posterior insula activation that was most pronounced for the certain pain condition. Uncertain anticipation was associated with attentional control processes. During stimulation, the results revealed that unexpected painful stimuli produced the strongest activation in the affective pain processing network and a more pronounced offset-P2. CONCLUSIONS: Our results reflect that during early anticipation uncertainty is strongly associated with affective mechanisms and seems to be a more salient event compared to certain anticipation. During the last 2 s before stimulation, attentional control mechanisms are initiated related to the increased salience of uncertainty. Furthermore, stimulus-specific preparatory mechanisms during certain anticipation also shaped the response to stimulation, underlining the adaptive value of stimulus-targeted preparatory activity which is less likely when facing an uncertain event.


Asunto(s)
Anticipación Psicológica/fisiología , Encéfalo/fisiopatología , Dolor/fisiopatología , Incertidumbre , Adulto , Mapeo Encefálico , Señales (Psicología) , Estimulación Eléctrica , Electroencefalografía , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/fisiopatología , Estimulación Luminosa , Percepción Visual/fisiología , Adulto Joven
9.
Biol Psychol ; 104: 184-92, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25541513

RESUMEN

The present study investigated whether the same visual stimulus indicating zero-value feedback (€0) elicits feedback-related negativity (FRN) variation, depending on whether the outcomes correspond with expectations or not. Thirty-one volunteers performed a monetary incentive delay (MID) task while EEG was recorded. FRN amplitudes were comparable and more negative when zero-value outcome deviated from expectations than with expected gain or loss, supporting theories emphasising the impact of unexpectedness and salience on FRN amplitudes. Surprisingly, expected zero-value outcomes elicited the most negative FRNs. However, source localisation showed that such outcomes evoked less activation in cingulate areas than unexpected zero-value outcomes. Our study illustrates the context dependency of identical zero-value feedback stimuli. Moreover, the results indicate that the incentive cues in the MID task evoke different reward prediction error signals. These prediction signals differ in FRN amplitude and neuronal sources, and have to be considered in the design and interpretation of future studies.


Asunto(s)
Encéfalo/fisiología , Toma de Decisiones/fisiología , Potenciales Evocados/fisiología , Motivación , Adulto , Señales (Psicología) , Electroencefalografía , Retroalimentación , Femenino , Humanos , Masculino , Estimulación Luminosa , Recompensa , Adulto Joven
10.
Neuroimage ; 96: 12-21, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24718288

RESUMEN

The anticipation of favourable or unfavourable events is a key component in our daily life. However, the temporal dynamics of anticipation processes in relation to brain activation are still not fully understood. A modified version of the monetary incentive delay task was administered during separate functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG) sessions in the same 25 participants to assess anticipatory processes with a multi-modal neuroimaging set-up. During fMRI, gain and loss anticipation were both associated with heightened activation in ventral striatum and reward-related areas. EEG revealed most pronounced P300 amplitudes for gain anticipation, whereas CNV amplitudes distinguished neutral from gain and loss anticipation. Importantly, P300, but not CNV amplitudes, were correlated to neural activation in the ventral striatum for both gain and loss anticipation. Larger P300 amplitudes indicated higher ventral striatum blood oxygen level dependent (BOLD) response. Early stimulus evaluation processes indexed by EEG seem to be positively related to higher activation levels in the ventral striatum, indexed by fMRI, which are usually associated with reward processing. The current results, however, point towards a more general motivational mechanism processing salient stimuli during anticipation.


Asunto(s)
Atención/fisiología , Electroencefalografía/métodos , Potenciales Relacionados con Evento P300/fisiología , Imagen por Resonancia Magnética/métodos , Motivación/fisiología , Recompensa , Estriado Ventral/fisiología , Adulto , Anticipación Psicológica/fisiología , Mapeo Encefálico/métodos , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
11.
Neuroimage ; 82: 336-43, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23769917

RESUMEN

Progressing from 3T to 7 T functional MRI enables marked improvements of human brain imaging in vivo. Although direct comparisons demonstrated advantages concerning blood oxygen level dependent (BOLD) signal response and spatial specificity, these mostly focused on single brain regions with rather simple tasks. Considering that physiological noise also increases with higher field strength, it is not entirely clear whether the advantages of 7T translate equally to the entire brain during tasks which elicit more complex neuronal processing. Therefore, we investigated the difference between 3T and 7 T in response to transcutaneous electrical painful and non-painful stimulation in 22 healthy subjects. For painful stimuli vs. baseline, stronger activations were observed at 7 T in several brain regions including the insula and supplementary motor area, but not the secondary somatosensory cortex (p<0.05 FWE-corrected). Contrasting painful vs. non-painful stimulation limited the differences between the field strengths to the periaqueductal gray (PAG, p<0.001 uncorrected) due to a similar signal increase at 7 T for both the target and specific control condition in most brain regions. This regional specificity obtained for the PAG at higher field strengths was confirmed by an additional spatial normalization strategy optimized for the brainstem. Here, robust BOLD responses were obtained in the dorsal PAG at 7 T (p<0.05 FWE-corrected), whereas at 3T activation was completely missing for the contrast against non-painful stimuli. To summarize, our findings support previously reported benefits obtained at ultra-high field strengths also for complex activation patterns elicited by painful electrical stimulation. However, this advantage depends on the region and even more on the contrast of interest. The greatest gain at 7 T was observed within the small brainstem region of the PAG, where the increased field strength offered marked improvement for the localization of activation foci with high spatial specificity.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiopatología , Imagen por Resonancia Magnética/métodos , Dolor/fisiopatología , Adulto , Estimulación Eléctrica , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Umbral del Dolor/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...