Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 11(12)2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35741017

RESUMEN

Olaparib is a poly (ADP-ribose) polymerase inhibitor (PARPi) that inhibits PARP1/2, leading to replication-induced DNA damage that requires homologous recombination repair. Olaparib is often insufficient to treat BRCA-mutated (BRCAMUT) and BRCA wild-type (BRCAWT) high-grade serous ovarian carcinomas (HGSOCs). We examined the short-term (up to 48 h) efficacy of PARPi treatment on a DNA damage response pathway mediated by ATR and CHK1 kinases in BRCAMUT (PEO-1) and BRCAWT (SKOV-3 and OV-90) cells. The combination of ATRi/CHK1i with PARPi was not more cytotoxic than ATR and CHK1 monotherapy. The combination of olaparib with inhibitors of the ATR/CHK1 pathway generated chromosomal abnormalities, independent on BRCAMUT status of cells and formed of micronuclei (MN). However, the beneficial effect of the PARPi:ATRi combination on MN was seen only in the PEO1 BRCAMUT line. Monotherapy with ATR/CHK1 inhibitors reduced BrdU incorporation due to a slower rate of DNA synthesis, which resulted from elevated levels of replication stress, while simultaneous blockade of PARP and ATR caused beneficial effects only in OV-90 cells. Inhibition of ATR/CHK1 increased the formation of double-strand breaks as measured by increased γH2AX expression at collapsed replication forks, resulting in increased levels of apoptosis. Our findings indicate that ATR and CHK1 inhibitors provoke premature mitotic entry, leading to genomic instability and ultimately cell death.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Antineoplásicos/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Carcinoma Epitelial de Ovario , Femenino , Inestabilidad Genómica , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico
2.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34638899

RESUMEN

This study examined the effect of combination treatment with the poly (ADP-ribose) polymerase inhibitor olaparib and metformin on homologous recombination (HR)-proficient epithelial ovarian cancer (EOC). Ovarian cancer cell lines (OV-90 and SKOV-3) were treated with olaparib, metformin, or a combination of both. Cell viability was assessed by MTT and colony formation assays. The production of reactive oxygen species (ROS) and changes in mitochondrial membrane potential were examined using the specific fluorescence probes, DCFH2-DA (2',7'-dichloro-dihydrofluorescein diacetate) and JC-1 (5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine). Apoptotic and necrotic changes were measured by double staining with Hoechst 33258 and propidium iodide, orange acridine and ethidium bromide staining, phosphatidylserine externalization, TUNEL assay, caspase 3/7 activity, and cytochrome c and p53 expression. Compared with single-drug treatment, the combination of olaparib and metformin significantly inhibited cell proliferation and colony formation in HR-proficient ovarian cancer cells. ROS production preceded a decrease in mitochondrial membrane potential. The changes in ROS levels suggested their involvement in inducing apoptosis in response to combination treatment. The present results indicate a shift towards synergism in cells with mutant or null p53, treated with olaparib combined with metformin, providing a new approach to the treatment of gynecologic cancers. Taken together, the results support the use of metformin to sensitize EOC to olaparib therapy.


Asunto(s)
Apoptosis/efectos de los fármacos , Metformina/farmacología , Ftalazinas/farmacología , Piperazinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/farmacología , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/metabolismo , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Línea Celular Tumoral , Daño del ADN , Sinergismo Farmacológico , Femenino , Humanos , Hipoglucemiantes/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Fosfatidilserinas/metabolismo
3.
Cancers (Basel) ; 13(11)2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34072593

RESUMEN

Genomic alterations and aberrant DNA damage signaling are hallmarks of ovarian cancer (OC), the leading cause of mortality among gynecological cancers worldwide. Owing to the lack of specific symptoms and late-stage diagnosis, survival chances of patients are significantly reduced. Poly (ADP-ribose) polymerase (PARP) inhibitors and replication stress response inhibitors present attractive therapeutic strategies for OC. Recent research has focused on ovarian cancer-associated microRNAs (miRNAs) that play significant regulatory roles in various cellular processes. While miRNAs have been shown to participate in regulation of tumorigenesis and drug responses through modulating the DNA damage response (DDR), little is known about their potential influence on sensitivity to chemotherapy. The main objective of this review is to summarize recent findings on the utility of miRNAs as cancer biomarkers, in particular, ovarian cancer, and their regulation of DDR or modified replication stress response proteins. We further discuss the suppressive and promotional effects of various miRNAs on ovarian cancer and their participation in cell cycle disturbance, response to DNA damage, and therapeutic functions in multiple cancer types, with particular focus on ovarian cancer. Improved understanding of the mechanisms by which miRNAs regulate drug resistance should facilitate the development of effective combination therapies for ovarian cancer.

4.
Toxicol In Vitro ; 73: 105128, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33652124

RESUMEN

Sulfonylureas (SUs) are suggested to accelerate the pancreatic ß-cells mass loss via apoptosis. However, little is known whether calpains mediate this process. The aim of the present study is to evaluate the involvement of calpains in SUs-induced death of human pancreatic cancer (PC) cell line 1.2B4. The cells were exposed to: glibenclamide, glimepiride and gliclazide for 72 h. The expression analysis of caspase-3 (CASP-3), TP53, calpain 1 (CAPN-1), calpain 2 (CAPN-2) and calpain 10 (CAPN-10) was detected using RT-PCR method. Intracellular Ca2+ concentrations, CASP-3 activity and total calpain activity were also evaluated. Our results have shown that glibenclamide and glimepiride decrease 1.2B4 cells viability with accompanied increase in intracellular Ca2+ concentration and increased expression of apoptosis-related CASP-3 and TP53. Gliclazide did not affect 1.2B4 cell viability and Ca2+ concentration, however, it downregulated CASP-3 and upregulated TP53. Interestingly, 50 µM glimepiride increased expression of CAPN-1, CAPN-2 and CAPN-10 whereas 50 µM glibenclamide solely upregulated CAPN-2 expression. We have shown that 10 µM and 50 µM glibenclamide and glimepiride increased the activity of CASP-3, but decreased total calpain activity. Our results suggest that calpains may be involved in glibenclamide- and glimepiride-induced death of PC cells. However, further investigation is required to confirm the engagement of calpains in SUs-mediated death of PC cells, especially studies on protein level of particular isoforms of calpains should be conducted.


Asunto(s)
Calpaína/metabolismo , Hipoglucemiantes/toxicidad , Neoplasias Pancreáticas/metabolismo , Compuestos de Sulfonilurea/toxicidad , Calcio/metabolismo , Calpaína/genética , Caspasa 3/genética , Caspasa 3/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Proteína p53 Supresora de Tumor/genética
5.
Int J Mol Sci ; 21(24)2020 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-33352723

RESUMEN

Poly (ADP-ribose) polymerase inhibitor (PARPi, olaparib) impairs the repair of DNA single-strand breaks (SSBs), resulting in double-strand breaks (DSBs) that cannot be repaired efficiently in homologous recombination repair (HRR)-deficient cancers such as BRCA1/2-mutant cancers, leading to synthetic lethality. Despite the efficacy of olaparib in the treatment of BRCA1/2 deficient tumors, PARPi resistance is common. We hypothesized that the combination of olaparib with anticancer agents that disrupt HRR by targeting ataxia telangiectasia and Rad3-related protein (ATR) or checkpoint kinase 1 (CHK1) may be an effective strategy to reverse ovarian cancer resistance to olaparib. Here, we evaluated the effect of olaparib, the ATR inhibitor AZD6738, and the CHK1 inhibitor MK8776 alone and in combination on cell survival, colony formation, replication stress response (RSR) protein expression, DNA damage, and apoptotic changes in BRCA2 mutated (PEO-1) and HRR-proficient BRCA wild-type (SKOV-3 and OV-90) cells. Combined treatment caused the accumulation of DNA DSBs. PARP expression was associated with sensitivity to olaparib or inhibitors of RSR. Synergistic effects were weaker when olaparib was combined with CHK1i and occurred regardless of the BRCA2 status of tumor cells. Because PARPi increases the reliance on ATR/CHK1 for genome stability, the combination of PARPi with ATR inhibition suppressed ovarian cancer cell growth independently of the efficacy of HRR. The present results were obtained at sub-lethal doses, suggesting the potential of these inhibitors as monotherapy as well as in combination with olaparib.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Cistadenocarcinoma Seroso/patología , Recombinación Homóloga , Neoplasias Ováricas/patología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Mutaciones Letales Sintéticas , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteína BRCA1/genética , Proteína BRCA2/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Cistadenocarcinoma Seroso/tratamiento farmacológico , Cistadenocarcinoma Seroso/genética , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , ARN Interferente Pequeño/genética , Transducción de Señal
6.
J Hematol Oncol ; 13(1): 39, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32316968

RESUMEN

Ovarian cancer is one of the most lethal gynecologic malignancies reported throughout the world. The initial, standard-of-care, adjuvant chemotherapy in epithelial ovarian cancer is usually a platinum drug, such as cisplatin or carboplatin, combined with a taxane. However, despite surgical removal of the tumor and initial high response rates to first-line chemotherapy, around 80% of women will develop cancer recurrence. Effective strategies, including chemotherapy and new research models, are necessary to improve the prognosis. The replication stress response (RSR) is characteristic of the development of tumors, including ovarian cancer. Hence, RSR pathway and DNA repair proteins have emerged as a new area for anticancer drug development. Although clinical trials have shown poly (ADP-ribose) polymerase inhibitors (PARPi) response rates of around 40% in women who carry a mutation in the BRCA1/2 genes, PARPi is responsible for tumor suppression, but not for complete tumor regression. Recent reports suggest that cells with impaired homologous recombination (HR) activities due to mutations in TP53 gene or specific DNA repair proteins are specifically sensitive to ataxia telangiectasia and Rad3-related protein (ATR) inhibitors. Replication stress activates DNA repair checkpoint proteins (ATR, CHK1), which prevent further DNA damage. This review describes the use of DNA repair checkpoint inhibitors as single agents and strategies combining these inhibitors with DNA-damaging compounds for ovarian cancer therapy, as well as the new platforms used for optimizing ovarian cancer therapy.


Asunto(s)
Antineoplásicos/uso terapéutico , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Reparación del ADN/efectos de los fármacos , Neoplasias Ováricas/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Animales , Antineoplásicos/farmacología , Ciclo Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Femenino , Humanos , Terapia Molecular Dirigida , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...