Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 29
1.
Nat Genet ; 56(5): 1018-1031, 2024 May.
Article En | MEDLINE | ID: mdl-38693345

Zygnematophyceae are the algal sisters of land plants. Here we sequenced four genomes of filamentous Zygnematophyceae, including chromosome-scale assemblies for three strains of Zygnema circumcarinatum. We inferred traits in the ancestor of Zygnematophyceae and land plants that might have ushered in the conquest of land by plants: expanded genes for signaling cascades, environmental response, and multicellular growth. Zygnematophyceae and land plants share all the major enzymes for cell wall synthesis and remodifications, and gene gains shaped this toolkit. Co-expression network analyses uncover gene cohorts that unite environmental signaling with multicellular developmental programs. Our data shed light on a molecular chassis that balances environmental response and growth modulation across more than 600 million years of streptophyte evolution.


Embryophyta , Evolution, Molecular , Phylogeny , Signal Transduction , Signal Transduction/genetics , Embryophyta/genetics , Gene Regulatory Networks , Genome/genetics , Genome, Plant
2.
Plants (Basel) ; 12(18)2023 Sep 15.
Article En | MEDLINE | ID: mdl-37765445

MADS-box genes encode transcription factors that play important roles in the development and evolution of plants. There are more than a dozen clades of MADS-box genes in angiosperms, of which those with functions in the specification of floral organ identity are especially well-known. From what has been elucidated in the model plant Arabidopsis thaliana, the clade of FLC-like MADS-box genes, comprising FLC-like genes sensu strictu and MAF-like genes, are somewhat special among the MADS-box genes of plants since FLC-like genes, especially MAF-like genes, show unusual evolutionary dynamics, in that they generate clusters of tandemly duplicated genes. Here, we make use of the latest genomic data of Brassicaceae to study this remarkable feature of the FLC-like genes in a phylogenetic context. We have identified all FLC-like genes in the genomes of 29 species of Brassicaceae and reconstructed the phylogeny of these genes employing a Maximum Likelihood method. In addition, we conducted selection analyses using PAML. Our results reveal that there are three major clades of FLC-like genes in Brassicaceae that all evolve under purifying selection but with remarkably different strengths. We confirm that the tandem arrangement of MAF-like genes in the genomes of Brassicaceae resulted in a high rate of duplications and losses. Interestingly, MAF-like genes also seem to be prone to transposition. Considering the role of FLC-like genes sensu lato (s.l.) in the timing of floral transition, we hypothesize that this rapid evolution of the MAF-like genes was a main contributor to the successful adaptation of Brassicaceae to different environments.

3.
Mol Biol Evol ; 40(5)2023 05 02.
Article En | MEDLINE | ID: mdl-37172323

Changes in transcription factor binding sites (TFBSs) can alter the spatiotemporal expression pattern and transcript abundance of genes. Loss and gain of TFBSs were shown to cause shifts in expression patterns in numerous cases. However, we know little about the evolution of extended regulatory sequences incorporating many TFBSs. We compare, across the crucifers (Brassicaceae, cabbage family), the sequences between the translated regions of Arabidopsis Bsister (ABS)-like MADS-box genes (including paralogous GOA-like genes) and the next gene upstream, as an example of family-wide evolution of putative upstream regulatory regions (PURRs). ABS-like genes are essential for integument development of ovules and endothelium formation in seeds of Arabidopsis thaliana. A combination of motif-based gene ontology enrichment and reporter gene analysis using A. thaliana as common trans-regulatory environment allows analysis of selected Brassicaceae Bsister gene PURRs. Comparison of TFBS of transcriptionally active ABS-like genes with those of transcriptionally largely inactive GOA-like genes shows that the number of in silico predicted TFBS) is similar between paralogs, emphasizing the importance of experimental verification for in silico characterization of TFBS activity and analysis of their evolution. Further, our data show highly conserved expression of Brassicaceae ABS-like genes almost exclusively in the chalazal region of ovules. The Arabidopsis-specific insertion of a transposable element (TE) into the ABS PURRs is required for stabilizing this spatially restricted expression, while other Brassicaceae achieve chalaza-specific expression without TE insertion. We hypothesize that the chalaza-specific expression of ABS is regulated by cis-regulatory elements provided by the TE.


Arabidopsis Proteins , Arabidopsis , Brassica , Brassicaceae , Arabidopsis/metabolism , Brassicaceae/genetics , Brassicaceae/metabolism , DNA Transposable Elements , Arabidopsis Proteins/genetics , Seeds/genetics , Brassica/genetics , Gene Expression Regulation, Plant
4.
Mol Biol Evol ; 40(5)2023 05 02.
Article En | MEDLINE | ID: mdl-37043523

During development of flowering plants, some MIKC-type MADS-domain transcription factors (MTFs) exert their regulatory function as heterotetrameric complexes bound to two sites on the DNA of target genes. This way they constitute "floral quartets" or related "floral quartet-like complexes" (FQCs), involving a unique multimeric system of paralogous protein interactions. Tetramerization of MTFs is brought about mainly by interactions of keratin-like (K) domains. The K-domain associated with the more ancient DNA-binding MADS-domain during evolution in the stem group of extant streptophytes (charophyte green algae + land plants). However, whether this was sufficient for MTF tetramerization and FQC formation to occur, remains unknown. Here, we provide biophysical and bioinformatic data indicating that FQC formation likely originated in the stem group of land plants in a sublineage of MIKC-type genes termed MIKCC-type genes. In the stem group of this gene lineage, the duplication of the most downstream exon encoding the K-domain led to a C-terminal elongation of the second K-domain helix, thus, generating the tetramerization interface found in extant MIKCC-type proteins. In the stem group of the sister lineage of the MIKCC-type genes, termed MIKC*-type genes, the duplication of two other K-domain exons occurred, extending the K-domain at its N-terminal end. Our data indicate that this structural change prevents heterodimerization between MIKCC-type and MIKC*-type proteins. This way, two largely independent gene regulatory networks could be established, featuring MIKCC-type or MIKC*-type proteins, respectively, that control different aspects of plant development.


MADS Domain Proteins , Transcription Factors , Transcription Factors/metabolism , Phylogeny , MADS Domain Proteins/genetics , Genes, Plant , Exons , Plant Proteins/genetics , Gene Expression Regulation, Plant
5.
bioRxiv ; 2023 Feb 01.
Article En | MEDLINE | ID: mdl-36778228

The filamentous and unicellular algae of the class Zygnematophyceae are the closest algal relatives of land plants. Inferring the properties of the last common ancestor shared by these algae and land plants allows us to identify decisive traits that enabled the conquest of land by plants. We sequenced four genomes of filamentous Zygnematophyceae (three strains of Zygnema circumcarinatum and one strain of Z. cylindricum) and generated chromosome-scale assemblies for all strains of the emerging model system Z. circumcarinatum. Comparative genomic analyses reveal expanded genes for signaling cascades, environmental response, and intracellular trafficking that we associate with multicellularity. Gene family analyses suggest that Zygnematophyceae share all the major enzymes with land plants for cell wall polysaccharide synthesis, degradation, and modifications; most of the enzymes for cell wall innovations, especially for polysaccharide backbone synthesis, were gained more than 700 million years ago. In Zygnematophyceae, these enzyme families expanded, forming co-expressed modules. Transcriptomic profiling of over 19 growth conditions combined with co-expression network analyses uncover cohorts of genes that unite environmental signaling with multicellular developmental programs. Our data shed light on a molecular chassis that balances environmental response and growth modulation across more than 600 million years of streptophyte evolution.

6.
Nat Plants ; 8(9): 1038-1051, 2022 09.
Article En | MEDLINE | ID: mdl-36050461

The large size and complexity of most fern genomes have hampered efforts to elucidate fundamental aspects of fern biology and land plant evolution through genome-enabled research. Here we present a chromosomal genome assembly and associated methylome, transcriptome and metabolome analyses for the model fern species Ceratopteris richardii. The assembly reveals a history of remarkably dynamic genome evolution including rapid changes in genome content and structure following the most recent whole-genome duplication approximately 60 million years ago. These changes include massive gene loss, rampant tandem duplications and multiple horizontal gene transfers from bacteria, contributing to the diversification of defence-related gene families. The insertion of transposable elements into introns has led to the large size of the Ceratopteris genome and to exceptionally long genes relative to other plants. Gene family analyses indicate that genes directing seed development were co-opted from those controlling the development of fern sporangia, providing insights into seed plant evolution. Our findings and annotated genome assembly extend the utility of Ceratopteris as a model for investigating and teaching plant biology.


Ferns , DNA Transposable Elements , Evolution, Molecular , Ferns/genetics , Genome, Plant , Plants/genetics
7.
BMC Plant Biol ; 22(1): 340, 2022 Jul 14.
Article En | MEDLINE | ID: mdl-35836106

BACKGROUND: Fruits are the seed-bearing structures of flowering plants and are highly diverse in terms of morphology, texture and maturation. Dehiscent fruits split open upon maturation to discharge their seeds while indehiscent fruits are dispersed as a whole. Indehiscent fruits evolved from dehiscent fruits several times independently in the crucifer family (Brassicaceae). The fruits of Lepidium appelianum, for example, are indehiscent while the fruits of the closely related L. campestre are dehiscent. Here, we investigate the molecular and genetic mechanisms underlying the evolutionary transition from dehiscent to indehiscent fruits using these two Lepidium species as model system. RESULTS: We have sequenced the transcriptomes and small RNAs of floral buds, flowers and fruits of L. appelianum and L. campestre and analyzed differentially expressed genes (DEGs) and differently differentially expressed genes (DDEGs). DEGs are genes that show significantly different transcript levels in the same structures (buds, flowers and fruits) in different species, or in different structures in the same species. DDEGs are genes for which the change in expression level between two structures is significantly different in one species than in the other. Comparing the two species, the highest number of DEGs was found in flowers, followed by fruits and floral buds while the highest number of DDEGs was found in fruits versus flowers followed by flowers versus floral buds. Several gene ontology terms related to cell wall synthesis and degradation were overrepresented in different sets of DEGs highlighting the importance of these processes for fruit opening. Furthermore, the fruit valve identity genes FRUITFULL and YABBY3 were among the DEGs identified. Finally, the microRNA miR166 as well as the TCP transcription factors BRANCHED1 (BRC1) and TCP FAMILY TRANSCRIPTION FACTOR 4 (TCP4) were found to be DDEGs. CONCLUSIONS: Our study reveals differences in gene expression between dehiscent and indehiscent fruits and uncovers miR166, BRC1 and TCP4 as candidate genes for the evolutionary transition from dehiscent to indehiscent fruits in Lepidium.


Brassicaceae , Lepidium , Brassicaceae/genetics , Brassicaceae/metabolism , Flowers/genetics , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , Lepidium/genetics , Transcriptome
8.
Plant J ; 106(1): 275-293, 2021 04.
Article En | MEDLINE | ID: mdl-33453123

Aethionema arabicum is an important model plant for Brassicaceae trait evolution, particularly of seed (development, regulation, germination, dormancy) and fruit (development, dehiscence mechanisms) characters. Its genome assembly was recently improved but the gene annotation was not updated. Here, we improved the Ae. arabicum gene annotation using 294 RNA-seq libraries and 136 307 full-length PacBio Iso-seq transcripts, increasing BUSCO completeness by 11.6% and featuring 5606 additional genes. Analysis of orthologs showed a lower number of genes in Ae. arabicum than in other Brassicaceae, which could be partially explained by loss of homeologs derived from the At-α polyploidization event and by a lower occurrence of tandem duplications after divergence of Aethionema from the other Brassicaceae. Benchmarking of MADS-box genes identified orthologs of FUL and AGL79 not found in previous versions. Analysis of full-length transcripts related to ABA-mediated seed dormancy discovered a conserved isoform of PIF6-ß and antisense transcripts in ABI3, ABI4 and DOG1, among other cases found of different alternative splicing between Turkey and Cyprus ecotypes. The presented data allow alternative splicing mining and proposition of numerous hypotheses to research evolution and functional genomics. Annotation data and sequences are available at the Ae. arabicum DB (https://plantcode.online.uni-marburg.de/aetar_db).


Brassicaceae/metabolism , Brassicaceae/physiology , Germination/physiology , Seeds/metabolism , Seeds/physiology , Brassicaceae/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Genome, Plant/genetics , Germination/genetics , Seeds/genetics
9.
Plant J ; 101(2): 401-419, 2020 01.
Article En | MEDLINE | ID: mdl-31571291

Some microRNAs (miRNAs) are key regulators of developmental processes, mainly by controlling the accumulation of transcripts encoding transcription factors that are important for morphogenesis. MADS-box genes encode a family of transcription factors which control diverse developmental processes in flowering plants. Here we study the convergent evolution of two MIRNA (MIR) gene families, named MIR444 and MIR824, targeting members of the same clade of MIKCC -group MADS-box genes. We show that these two MIR genes most likely originated independently in monocots (MIR444) and in Brassicales (eudicots, MIR824). We provide evidence that, in both cases, the future target gene was transcribed in antisense prior to the evolution of the MIR genes. Both MIR genes then likely originated by a partial inverted duplication of their target genes, resulting in natural antisense organization of the newly evolved MIR gene and its target gene at birth. We thus propose a model for the origin of MIR genes, MEPIDAS (MicroRNA Evolution by Partial Inverted Duplication of Antisense-transcribed Sequences). MEPIDAS is a refinement of the inverted duplication hypothesis. According to MEPIDAS, a MIR gene evolves at a genomic locus at which the future target gene is also transcribed in the antisense direction. A partial inverted duplication at this locus causes the antisense transcript to fold into a stem-loop structure that is recognized by the miRNA biogenesis machinery to produce a miRNA that regulates the gene at this locus. Our analyses exemplify how to elucidate the origin of conserved miRNAs by comparative genomics and will guide future studies. OPEN RESEARCH BADGE: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://www.ncbi.nlm.nih.gov/genbank/.


Genes, Plant/genetics , MicroRNAs/genetics , Transcription Factors/genetics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Evolution, Molecular , Gene Duplication , Gene Expression Regulation, Plant , Genomics , MADS Domain Proteins/genetics , Magnoliopsida/genetics , Phylogeny , Plant Development
10.
Methods Mol Biol ; 1932: 41-50, 2019.
Article En | MEDLINE | ID: mdl-30701490

Plant microRNAs do not only perform important roles in development; they also have a fascinating evolutionary dynamics. Their genes appear to originate at quite a high rate during evolution, but most of them evolve initially in an almost neutral way and hence also get lost quite rapidly. Despite the high birth and death rate, a few miRNA-encoding genes got involved in the control of important target genes and thus have been conserved during evolution. This happened obviously at all times and taxonomic levels during land plant evolution. Consequently, the genomes of extant plant species contain a mix of miRNA-encoding genes of different ages, ranging from very young, often even species-specific loci to genes that had already been established in the stem group of extant land plants more than 400 million years ago. It could well be that the evolutionary dynamics of miRNA-encoding genes contributed substantially to the evolution of developmental plasticity in plants.


Conserved Sequence/genetics , MicroRNAs/genetics , RNA, Plant/genetics , Evolution, Molecular , Genes, Plant/genetics , Genome, Plant/genetics , Humans
11.
Mol Biol Evol ; 35(11): 2618-2638, 2018 11 01.
Article En | MEDLINE | ID: mdl-30053121

Genes are "born," and eventually they "die." These processes shape the phenotypic evolution of organisms and are hence of great biological interest. If genes die in plants, they generally do so quite rapidly. Here, we describe the fate of GOA-like genes that evolve in a dramatically different manner. GOA-like genes belong to the subfamily of Bsister genes of MIKC-type MADS-box genes. Typical MIKC-type genes encode conserved transcription factors controlling plant development. We show that ABS-like genes, a clade of Bsister genes, are indeed highly conserved in crucifers (Brassicaceae) maintaining the ancestral function of Bsister genes in ovule and seed development. In contrast, their closest paralogs, the GOA-like genes, have been undergoing convergent gene death in Brassicaceae. Intriguingly, erosion of GOA-like genes occurred after millions of years of coexistence with ABS-like genes. We thus describe Delayed Convergent Asymmetric Degeneration, a so far neglected but possibly frequent pattern of duplicate gene evolution that does not fit classical scenarios. Delayed Convergent Asymmetric Degeneration of GOA-like genes may have been initiated by a reduction in the expression of an ancestral GOA-like gene in the stem group of Brassicaceae and driven by dosage subfunctionalization. Our findings have profound implications for gene annotations in genomics, interpreting patterns of gene evolution and using genes in phylogeny reconstructions of species.


Brassicaceae/genetics , Evolution, Molecular , MADS Domain Proteins/genetics , Phylogeny , Pseudogenes , Selection, Genetic
12.
Trends Plant Sci ; 23(7): 563-576, 2018 07.
Article En | MEDLINE | ID: mdl-29802068

In a world of global warming, the question emerges whether all plants have suitable mechanisms to keep pace with the rapidly changing environment. Most previous studies have focused on either the ability of plants to rapidly acclimatize via physiological and developmental plasticity, or long-term adaptation over thousands of years. However, we wonder whether plants can also adapt to changes in the environment within only a few generations. We hypothesize that rapidly evolving clusters of tandemly duplicated developmental control genes represent a source for fast adaptation. Specifically, we propose that a tandem cluster of FLC-like MADS-box genes involved in the transition to flowering in Arabidopsis functions as a facilitator for rapid adaptation to changes in ambient temperature.


Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Flowers/metabolism , MADS Domain Proteins/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , DNA Copy Number Variations/genetics , Flowers/genetics , Gene Expression Regulation, Plant , MADS Domain Proteins/genetics
13.
Plant J ; 84(6): 1059-72, 2015 Dec.
Article En | MEDLINE | ID: mdl-26473514

Bsister MADS-box genes play key roles in female reproductive organ and seed development throughout seed plants. This view is supported by their high conservation in terms of sequence, expression and function. In grasses, there are three subclades of Bsister genes: the OsMADS29-, the OsMADS30- and the OsMADS31-like genes. Here, we report on the evolution of the OsMADS30-like genes. Our analyses indicate that these genes evolved under relaxed purifying selection and are rather weakly expressed. OsMADS30, the representative of the OsMADS30-like genes from rice (Oryza sativa), shows strong sequence deviations in its 3' region when compared to orthologues from other grass species. We show that this is due to a 2.4-kbp insertion, possibly of a hitherto unknown helitron, which confers a heterologous C-terminal domain to OsMADS30. This putative helitron is not present in the OsMADS30 orthologues from closely related wild rice species, pointing to a relatively recent insertion event. Unlike other Bsister mutants O. sativa plants carrying a T-DNA insertion in the OsMADS30 gene do not show aberrant seed phenotypes, indicating that OsMADS30 likely does not have a canonical 'Bsister function'. However, imaging-based phenotyping of the T-DNA carrying plants revealed alterations in shoot size and architecture. We hypothesize that sequence deviations that accumulated during a period of relaxed selection in the gene lineage that led to OsMADS30 and the alteration of the C-terminal domain might have been a precondition for a potential neo-functionalization of OsMADS30 in O. sativa.


Gene Expression Regulation, Plant/physiology , Oryza/genetics , Phylogeny , Plant Proteins/metabolism , Base Sequence , Interspersed Repetitive Sequences , Plant Proteins/classification , Plant Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism
14.
Trends Plant Sci ; 20(12): 798-806, 2015 Dec.
Article En | MEDLINE | ID: mdl-26463218

Phytoplasmas are pathogenic bacteria that reprogram plant development such that leaf-like structures instead of floral organs develop. Infected plants are sterile and mainly serve to propagate phytoplasmas and thus have been termed 'zombie plants'. The developmental reprogramming relies on specific interactions of the phytoplasma protein SAP54 with a small subset of MADS-domain transcription factors. Here, we propose that SAP54 folds into a structure that is similar to that of the K-domain, a protein-protein interaction domain of MADS-domain proteins. We suggest that undergoing convergent structural and sequence evolution, SAP54 evolved to mimic the K-domain. Given the high specificity of resulting developmental alterations, phytoplasmas might be used to study flower development in genetically intractable plants.


Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Host-Pathogen Interactions , Phytoplasma/physiology , Plants/microbiology , Arabidopsis/genetics , Arabidopsis/microbiology , Biological Evolution , Evolution, Molecular , Flowers/growth & development , Flowers/microbiology , Mutation , Phytoplasma/pathogenicity , Plant Development , Plant Leaves/growth & development , Plant Leaves/microbiology , Protein Folding , Protein Interaction Domains and Motifs
15.
J Exp Zool B Mol Dev Evol ; 324(4): 353-62, 2015 Jun.
Article En | MEDLINE | ID: mdl-25678468

MIKC(C)-group MADS-box genes are involved in the control of many developmental processes in flowering plants. All of these genes are members of one of 17 clades that had already been established in the most recent common ancestor (MRCA) of extant angiosperms. These clades trace back to 11 seed plant-specific superclades that were present in the MRCA of extant seed plants. Due to their important role in plant development and evolution, the origin of the clades of MIKC(C)-group genes has been studied in great detail. In contrast, whether any of these ancestral clades has ever been lost completely in any species has not been investigated so far. Here, we determined the presence of these clades by BLAST, PSI-BLAST, and Hidden Markov Model searches and by phylogenetic methods in the whole genomes of 27 flowering plants. Our data suggest that there are only three superclades of which all members have been lost in at least one of the investigated flowering plant species, and only few additional losses of angiosperm-specific MIKC(C)-group gene clades could be identified. Remarkably, for one seed plant superclade (TM8-like genes) and one angiosperm clade (FLC-like genes), multiple losses were identified, suggesting that the function of these genes is dispensable or that gene loss might have even been adaptive. The clades of MIKC(C)-group genes that have never been wiped out in any of the investigated species comprises, in addition to the expected floral organ identity genes, also TM3-like (SOC1-like), StMADS11-like (SVP-like), AGL17-like and GGM13-like (Bsister) genes, suggesting that these genes are more important for angiosperm development and evolution than has previously been appreciated.


Evolution, Molecular , Genes, Plant , MADS Domain Proteins/genetics , Magnoliopsida/genetics , Plant Proteins/genetics , Magnoliopsida/growth & development , Phylogeny
16.
Insect Biochem Mol Biol ; 52: 33-50, 2014 Sep.
Article En | MEDLINE | ID: mdl-24978610

Plant cell walls are the largest reservoir of organic carbon on earth. To breach and utilize this carbohydrate-rich protective barrier, microbes secrete plant cell wall degrading enzymes (PCWDEs) targeting pectin, cellulose and hemicelluloses. There is a growing body of evidence that genomes of some herbivorous insects also encode PCWDEs, raising questions about their evolutionary origins and functions. Among herbivorous beetles, pectin-degrading polygalacturonases (PGs) are found in the diverse superfamilies Chrysomeloidea (leaf beetles, long-horn beetles) and Curculionoidea (weevils). Here our aim was to test whether these arose from a common ancestor of beetles or via horizontal gene transfer (HGT), and whether PGs kept their ancestral function in degrading pectin or evolved novel functions. Transcriptome data derived from 10 beetle species were screened for PG-encoding sequences and used for phylogenetic comparisons with their bacterial, fungal and plant counterparts. These analyses revealed a large family of PG-encoding genes of Chrysomeloidea and Curculionoidea sharing a common ancestor, most similar to PG genes of ascomycete fungi. In addition, 50 PGs from beetle digestive systems were heterologously expressed and functionally characterized, showing a set of lineage-specific consecutively pectin-degrading enzymes, as well as conserved but enzymatically inactive PG proteins. The evidence indicates that a PG gene was horizontally transferred ∼200 million years ago from an ascomycete fungus to a common ancestor of Chrysomeloidea and Curculionoidea. This has been followed by independent duplications in these two lineages, as well as independent replacement in two sublineages of Chrysomeloidea by two other subsequent HGTs. This origin, leading to subsequent functional diversification of the PG gene family within its new hosts, was a key event promoting the evolution of herbivory in these beetles.


Biological Evolution , Coleoptera/enzymology , Coleoptera/genetics , Gene Transfer, Horizontal , Herbivory/genetics , Polygalacturonase/genetics , Animals , Ascomycota/enzymology , Ascomycota/genetics , Base Sequence , Cell Wall , Molecular Sequence Data , Pectins/metabolism , Phylogeny , Plants/parasitology , Transcriptome
17.
Ann Bot ; 114(7): 1407-29, 2014 Nov.
Article En | MEDLINE | ID: mdl-24854168

BACKGROUND AND AIMS: MADS-box genes comprise a gene family coding for transcription factors. This gene family expanded greatly during land plant evolution such that the number of MADS-box genes ranges from one or two in green algae to around 100 in angiosperms. Given the crucial functions of MADS-box genes for nearly all aspects of plant development, the expansion of this gene family probably contributed to the increasing complexity of plants. However, the expansion of MADS-box genes during one important step of land plant evolution, namely the origin of seed plants, remains poorly understood due to the previous lack of whole-genome data for gymnosperms. METHODS: The newly available genome sequences of Picea abies, Picea glauca and Pinus taeda were used to identify the complete set of MADS-box genes in these conifers. In addition, MADS-box genes were identified in the growing number of transcriptomes available for gymnosperms. With these datasets, phylogenies were constructed to determine the ancestral set of MADS-box genes of seed plants and to infer the ancestral functions of these genes. KEY RESULTS: Type I MADS-box genes are under-represented in gymnosperms and only a minimum of two Type I MADS-box genes have been present in the most recent common ancestor (MRCA) of seed plants. In contrast, a large number of Type II MADS-box genes were found in gymnosperms. The MRCA of extant seed plants probably possessed at least 11-14 Type II MADS-box genes. In gymnosperms two duplications of Type II MADS-box genes were found, such that the MRCA of extant gymnosperms had at least 14-16 Type II MADS-box genes. CONCLUSIONS: The implied ancestral set of MADS-box genes for seed plants shows simplicity for Type I MADS-box genes and remarkable complexity for Type II MADS-box genes in terms of phylogeny and putative functions. The analysis of transcriptome data reveals that gymnosperm MADS-box genes are expressed in a great variety of tissues, indicating diverse roles of MADS-box genes for the development of gymnosperms. This study is the first that provides a comprehensive overview of MADS-box genes in conifers and thus will provide a framework for future work on MADS-box genes in seed plants.


Cycadopsida/genetics , Evolution, Molecular , Genome, Plant/genetics , Genomics , MADS Domain Proteins/genetics , Amino Acid Sequence , Chromosome Mapping , Gene Expression Regulation, Plant , MADS Domain Proteins/classification , Molecular Sequence Data , Phylogeny , Picea/genetics , Pinus taeda/genetics , Plant Proteins/classification , Plant Proteins/genetics , Seeds/genetics , Sequence Alignment , Tracheophyta/genetics , Transcriptome
18.
Genome Biol Evol ; 6(5): 1118-34, 2014 Apr 20.
Article En | MEDLINE | ID: mdl-24751979

We map 114 gene gains and 74 gene losses in the P450 gene family across the phylogeny of 12 Drosophila species by examining the congruence of gene trees and species trees. Although the number of P450 genes varies from 74 to 94 in the species examined, we infer that there were at least 77 P450 genes in the ancestral Drosophila genome. One of the most striking observations in the data set is the elevated loss of P450 genes in the Drosophila sechellia lineage. The gain and loss events are not evenly distributed among the P450 genes-with 30 genes showing no gene gains or losses whereas others show as many as 20 copy number changes among the species examined. The P450 gene clades showing the fewest number of gene gain and loss events tend to be those evolving with the most purifying selection acting on the protein sequences, although there are exceptions, such as the rapid rate of amino acid replacement observed in the single copy phantom (Cyp306a1) gene. Within D. melanogaster, we observe gene copy number polymorphism in ten P450 genes including multiple cases of interparalog chimeras. Nonallelic homologous recombination (NAHR) has been associated with deleterious mutations in humans, but here we provide a second possible example of an NAHR event in insect P450s being adaptive. Specifically, we find that a polymorphic Cyp12a4/Cyp12a5 chimera correlates with resistance to an insecticide. Although we observe such interparalog exchange in our within-species data sets, we have little evidence of it between species, raising the possibility that such events may occur more frequently than appreciated but are masked by subsequent sequence change.


Cytochrome P-450 Enzyme System/genetics , Drosophila Proteins/genetics , Drosophila/genetics , Evolution, Molecular , Adaptation, Physiological/genetics , Amino Acid Substitution , Animals , Base Sequence , Gene Deletion , Gene Dosage , Genome, Insect , Homologous Recombination , Models, Genetic , Molecular Sequence Data , Multigene Family , Phylogeny , Polymorphism, Genetic
19.
Nature ; 497(7451): 579-84, 2013 May 30.
Article En | MEDLINE | ID: mdl-23698360

Conifers have dominated forests for more than 200 million years and are of huge ecological and economic importance. Here we present the draft assembly of the 20-gigabase genome of Norway spruce (Picea abies), the first available for any gymnosperm. The number of well-supported genes (28,354) is similar to the >100 times smaller genome of Arabidopsis thaliana, and there is no evidence of a recent whole-genome duplication in the gymnosperm lineage. Instead, the large genome size seems to result from the slow and steady accumulation of a diverse set of long-terminal repeat transposable elements, possibly owing to the lack of an efficient elimination mechanism. Comparative sequencing of Pinus sylvestris, Abies sibirica, Juniperus communis, Taxus baccata and Gnetum gnemon reveals that the transposable element diversity is shared among extant conifers. Expression of 24-nucleotide small RNAs, previously implicated in transposable element silencing, is tissue-specific and much lower than in other plants. We further identify numerous long (>10,000 base pairs) introns, gene-like fragments, uncharacterized long non-coding RNAs and short RNAs. This opens up new genomic avenues for conifer forestry and breeding.


Evolution, Molecular , Genome, Plant/genetics , Picea/genetics , Conserved Sequence/genetics , DNA Transposable Elements/genetics , Gene Silencing , Genes, Plant/genetics , Genomics , Internet , Introns/genetics , Phenotype , RNA, Untranslated/genetics , Sequence Analysis, DNA , Terminal Repeat Sequences/genetics , Transcription, Genetic/genetics
20.
Biology (Basel) ; 2(3): 1150-64, 2013 Sep 12.
Article En | MEDLINE | ID: mdl-24833059

The development of multicellular eukaryotes, according to their body plan, is often directed by members of multigene families that encode transcription factors. MADS (for MINICHROMOSOME MAINTENANCE1, AGAMOUS, DEFICIENS and SERUM RESPONSE FACTOR)-box genes form one of those families controlling nearly all major aspects of plant development. Knowing the complete complement of MADS-box genes in sequenced plant genomes will allow a better understanding of the evolutionary patterns of these genes and the association of their evolution with the evolution of plant morphologies. Here, we have applied a combination of automatic and manual annotations to identify the complete set of MADS-box genes in 17 plant genomes. Furthermore, three plant genomes were reanalyzed and published datasets were used for four genomes such that more than 2,600 genes from 24 species were classified into the two types of MADS-box genes, Type I and Type II. Our results extend previous studies, highlighting the remarkably different evolutionary patterns of Type I and Type II genes and provide a basis for further studies on the evolution and function of MADS-box genes.

...