Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38964286

RESUMEN

Increasing quantum confinement in semiconductor quantum dot systems is essential to perform robust simulations of many-body physics. By combining molecular beam epitaxy and lithographic techniques, we developed an approach consisting of a twofold selective area growth to build quantum dot chains. Starting from 15 nm-thick and 65 nm-wide in-plane In0.53Ga0.47As nanowires on InP substrates, linear arrays of In0.53Ga0.47As quantum dots were grown on top, with tunable lengths and separations. Kelvin probe force microscopy performed at room temperature revealed a change of quantum confinement in chains with decreasing quantum dot sizes, which was further emphasized by the spectral shift of quantum levels resolved in the conduction band with low temperature scanning tunneling spectroscopy. This approach, which allows the controlled formation of 25 nm-thick quantum dots with a minimum length and separation of 30 nm and 22 nm respectively, is suitable for the construction of scalable fermionic quantum lattices. .

2.
ACS Appl Mater Interfaces ; 16(12): 14852-14863, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38501567

RESUMEN

Among semiconductor nanomaterials, titanium dioxide is at the forefront of heterogeneous photocatalysis, but its catalytic activity greatly suffers from the loss of photoexcited charge carriers through deleterious recombination processes. Here, we investigate the impact of an external electric field (EEF) applied to conventional P25 TiO2 nanopowder with or without Au nanoparticles (NPs) to circumvent this issue. The study of two redox reactions in the gas phase, water splitting and toluene degradation, reveals an enhancement of the photocatalytic activity with rather modest electric fields of a few volt/centimeters only. Such an improvement arises from the electric-field-induced quenching of the green emission in anatase, allowing the photoexcited charge carriers to be transferred to the adsorbed reactants instead of pointless radiative recombinations. Applying an EEF across a trap-rich metal oxide material, such as TiO2, which, when impregnated with Au NPs, leads, respectively, to 12- and 6-fold enhancements in the production of hydrogen and the oxidation of toluene for an electric field of 8 V/cm, without any electrolysis, is a simple and elegant strategy to meet higher photocatalytic efficiencies.

3.
Adv Mater ; 36(18): e2311305, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38270280

RESUMEN

Semitransparent organic photovoltaics (ST-OPVs) offer promising prospects for application in building-integrated photovoltaic systems and greenhouses, but further improvement of their performance faces a delicate trade-off between the two competing indexes of power conversion efficiency (PCE) and average visible transmittance (AVT). Herein, the authors take advantage of coupling plasmonics with the optical design of ST-OPVs to enhance near-infrared absorption and hence simultaneously improve efficiency and visible transparency to the maximum extent. By integrating core-bishell PdCu@Au@SiO2 nanotripods that act as optically isotropic Lambertian sources with near-infrared-customized localized surface plasmon resonance in an optimal ternary PM6:BTP-eC9:L8-BO-based ST-OPV, it is shown that their interplay with a multilayer optical coupling layer, consisting of ZnS(130 nm)/Na3AlF6(60 nm)/WO3(100 nm)/LaF3(50 nm) identified from high-throughput optical screening, leads to a record-high PCE of 16.14% (certified as 15.90%) along with an excellent AVT of 33.02%. The strong enhancement of the light utilization efficiency by ≈50% as compared to the counterpart device without optical engineering provides an encouraging and universal pathway for promoting breakthroughs in ST-OPVs from meticulous optical design.

4.
Rev Sci Instrum ; 94(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38051176

RESUMEN

Raman spectroscopy is well-suited for the characterization of semiconductor materials. However, due the weakness of the Raman signal, the studies of thin semiconductor layers in complex environments, such as ultrahigh vacuum, are rather scarce. Here, we have designed a Raman apparatus based on the use of a fiber optic probe, with a lens collecting the backscattered light directly inserted in ultrahigh vacuum. The solution has been tested for the preparation of III-V semiconductor surfaces, which requires the recovery of their atomic reconstruction. The surfaces were either protected with a thin As amorphous layer or covered with a native oxide prior to their treatment. The analysis of the Raman spectra, which was correlated with the study of the surfaces with low temperature scanning tunneling microscopy at the end of the cleaning process, shows the high potential of Raman spectroscopy for monitoring the cleanliness of III-V semiconductor heterostructures in situ.

6.
ACS Appl Mater Interfaces ; 15(42): 49436-49446, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37821424

RESUMEN

Near-infrared (NIR) narrowband organic photodetectors (OPDs) can be essential building blocks for emerging applications including wireless optical communication and light detection, but further improvement of their performances remains to be a great challenge. Herein, a light manipulation strategy combining solution-processable gold nanorings (AuNRs)-based hole transporting layer (HTL) and an optical microcavity is proposed to achieve high-performance NIR narrowband OPDs. Optical microcavities with a Fabry-Pérot resonator structure, guided by theoretical simulation, are coupled with PM6:BTP-eC9-based OPDs to exhibit highly tunable NIR selectivity. The further integration of AuNRs array with NIR-customized localized surface plasmon resonance in the HTL of the NIR narrowband OPDs enables evident NIR absorption enhancement, yielding a specific detectivity exceeding 1013 Jones (1.5 × 1012 Jones, calculated from noise spectral density) at 820 nm, along with a finely selective photoresponse (full width at half-maximum of 80 nm) and a 3-fold increase in photocurrent intensity. Finally, the practical application of our OPDs is demonstrated in an NIR communication system. These results reveal the great potential of an appropriate optical design for developing highly performing NIR narrowband OPDs.

7.
ACS Nano ; 17(16): 15687-15695, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37549002

RESUMEN

Two-dimensional (2D) honeycomb lattices beyond graphene, such as germanene, appear very promising due to their outstanding electronic properties, such as the quantum spin Hall effects. While there have been many claims of germanene monolayers up to now, no experimental evidence of a honeycomb structure has been provided up to now for these grown monolayers. Using scanning tunneling microscopy (STM), surface X-ray diffraction (SXRD), and density functional theory, we have elucidated the Ge-induced (109×109)R±24.5° reconstruction on Ag(111). We demonstrate that a powerful algorithm combining SXRD with STM allows us to solve a giant surface reconstruction with more than a hundred atoms per unit cell. Its extensive unit cell indeed consists of 98 2-fold or 3-fold coordinated Ge atoms, forming a periodic arrangement of pentagons, hexagons, and heptagons, with the inclusion of six dispersed Ag atoms. By analogy, we show that the (77×77)R±19.1° reconstruction obtained by segregation of Ge through an epitaxial Ag/Ge(111) film possesses a similar structure, i.e., Ge pentagons/hexagons/heptagons with a few Ag atoms. Such an organization is more stable than that of pure Ge monolayers and can be assigned to the ground state of epitaxial germanene.

8.
Nanomaterials (Basel) ; 12(7)2022 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-35407246

RESUMEN

Germanane is a two-dimensional material consisting of stacks of atomically thin germanium sheets. It's easy and low-cost synthesis holds promise for the development of atomic-scale devices. However, to become an electronic-grade material, high-quality layered crystals with good chemical purity and stability are needed. To this end, we studied the electrical transport of annealed methyl-terminated germanane microcrystallites in both high vacuum and ultrahigh vacuum. Scanning electron microscopy of crystallites revealed two types of behavior which arise from the difference in the crystallite chemistry. While some crystallites are hydrated and oxidized, preventing the formation of good electrical contact, the four-point resistance of oxygen-free crystallites was measured with multiple tips scanning tunneling microscopy, yielding a bulk transport with resistivity smaller than 1 Ω·cm. When normalized by the crystallite thickness, the resistance compares well with the resistance of hydrogen-passivated germanane flakes found in the literature. Along with the high purity of the crystallites, a thermal stability of the resistance at 280 °C makes methyl-terminated germanane suitable for complementary metal oxide semiconductor back-end-of-line processes.

9.
ACS Nano ; 16(2): 3081-3091, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35156366

RESUMEN

Oriented attachment of colloidal quantum dots allows the growth of two-dimensional crystals by design, which could have striking electronic properties upon progress on manipulating their conductivity. Here, we explore the origin of doping in square and epitaxially fused PbSe quantum dot superlattices with low-temperature scanning tunneling microscopy and spectroscopy. Probing the density of states of numerous individual quantum dots reveals an electronic coupling between the hole ground states of the quantum dots. Moreover, a small amount of quantum dots shows a reproducible deep level in the band gap, which is not caused by structural defects in the connections but arises from unpassivated sites at the {111} facets. Based on semiconductor statistics, these distinct defective quantum dots, randomly distributed in the superlattice, trap electrons, releasing a concentration of free holes, which is intimately related to the interdot electronic coupling. They act as acceptor quantum dots in the host quantum dot lattice, mimicking the role of dopant atoms in a semiconductor crystal.

10.
Small ; 17(50): e2100655, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34337855

RESUMEN

The band alignment, interface states, interface coupling, and carrier transport of semiconductor heterojunctions (SHs) need to be well understood for the design and fabrication of various important semiconductor structures and devices. Scanning tunneling microscopy (STM) with high spatial resolution and scanning tunneling spectroscopy (STS) with high energy resolution are significantly contributing to the understanding on the important properties of SHs. In this work, the recent progress on the use of STM and STS to study lateral, vertical and bulk SHs is reviewed. The spatial structures of SHs with atomically flat surface have been examined with STM. The electronic band structures (e. g., the band offset, interface state, and space charge region) of SHs are measured with STS. Combined with the spatial structures and the tunneling spectra features, the mechanism for the carrier transport in the SH may be proposed.

11.
ACS Appl Mater Interfaces ; 13(32): 38450-38457, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34357748

RESUMEN

Power consumption, thermal management, and wiring challenge of the binary serial architecture drive the search for alternative paradigms to computing. Of special interest is neuromorphic computing, in which materials and device structures are designed to mimic neuronal functionalities with energy-efficient non-linear responses and both short- and long-term plasticities. In this work, we explore and report on the enabling potential of single-electron tunneling (SET) in PbS nanoplatelets epitaxially grown in the liquid phase on InP, which present these key features. By extrapolating the experimental data in the SET regime, we predict and model synaptic operations. The low-energy (

12.
Nano Lett ; 21(4): 1702-1708, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33544602

RESUMEN

Semiconductor nanoplatelets, which offer a compelling combination of the flatness of two-dimensional semiconductors and the inherent richness brought about by colloidal nanostructure synthesis, form an ideal and general testbed to investigate fundamental physical effects related to the dimensionality of semiconductors. With low temperature scanning tunnelling spectroscopy and tight binding calculations, we investigate the conduction band density of states of individual CdSe nanoplatelets. We find an occurrence of peaks instead of the typical steplike function associated with a quantum well, that rule out a free in-plane electron motion, in agreement with the theoretical density of states. This finding, along with the detection of deep trap states located on the edge facets, which also restrict the electron motion, provides a detailed picture of the actual lateral confinement in quantum wells with finite length and width.

13.
Nano Lett ; 21(1): 680-685, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33337891

RESUMEN

Electron states in semiconductor materials can be modified by quantum confinement. Adding to semiconductor heterostructures the concept of lateral geometry offers the possibility to further tailor the electronic band structure with the creation of unique flat bands. Using block copolymer lithography, we describe the design, fabrication, and characterization of multiorbital bands in a honeycomb In0.53Ga0.47As/InP heterostructure quantum well with a lattice constant of 21 nm. Thanks to an optimized surface quality, scanning tunnelling spectroscopy reveals the existence of a strong resonance localized between the lattice sites, signature of a p-orbital flat band. Together with theoretical computations, the impact of the nanopatterning imperfections on the band structure is examined. We show that the flat band is protected against the lateral and vertical disorder, making this industry-standard system particularly attractive for the study of exotic phases of matter.

14.
Nanotechnology ; 31(37): 375203, 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32434165

RESUMEN

Improved performance in flexible organic light-emitting diodes (OLEDs) is demonstrated by using a hybrid nanostructured plasmonic electrode consisting of silver nanowires (AgNWs) decorated with silver nanoparticles (AgNPs) and covered by exfoliated graphene sheets. Such all-solution processed electrodes show high optical transparency and electrical conductivity. When integrated in an OLED with super yellow polyphenylene vinylene as the emissive layer, the plasmon coupling of the NW-NP hybrid plasmonic system is found to significantly enhance the fluorescence, demonstrated by both simulations and photoluminescence measurements, leading to a current efficiency of 11.61 cd A-1 and a maximum luminance of 20 008 cd m-2 in OLEDs. Stress studies reveal a superior mechanical flexibility to the commercial indium-tin-oxide (ITO) counterparts, due to the incorporation of exfoliated graphene sheets. Our results show that these hybrid nanostructured plasmonic electrodes can be applied as an effective alternative to ITO for use in high-performance flexible OLEDs.

15.
J Phys Condens Matter ; 32(5): 055002, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-31604343

RESUMEN

Despite the wealth of tunneling spectroscopic studies performed on silicene and germanene, the observation of a well-defined Dirac cone in these materials remains elusive. Here, we study germanene grown on Al(1 1 1) at submonolayer coverages with low temperature scanning tunneling spectroscopy. We show that the tunnelling spectra of the Al(1 1 1) surface and the germanene nanosheets are identical. They exhibit a clear metallic behaviour at the beginning of the experiments, that highlights the strong electronic coupling between the adlayer and the substrate. Over the course of the experiments, the spectra deviate from this initial behaviour, although consecutive spectra measured on the Al(1 1 1) surface and germanene nanosheets are still similar. This spectral diversity is explained by modifications of the tip apex, that arise from the erratic manipulation of the germanium adlayer. The origin of the characteristic features such as a wide band gap, coherence-like peaks or zero-bias anomalies are tentatively discussed in light of the physical properties of Ge and AlGe alloy clusters, that are likely to adsorb at the tip apex.

16.
Nanotechnology ; 30(32): 324002, 2019 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-30995632

RESUMEN

The surface morphology of III-V semiconductor nanowires (NWs) protected by an arsenic cap and subsequently evaporated in ultrahigh vacuum is investigated with scanning tunneling microscopy and scanning transmission electron microscopy. We show that the changes of the surface morphology as a function of the NW composition and the nature of the seed particles are intimately related to the formation and reaction of surface point defects. Langmuir evaporation close to the congruent evaporation temperature causes the formation of vacancies which nucleate and form vacancy islands on {110} sidewalls of self-catalyzed InAs NWs. However, for annealing temperatures much smaller than the congruent temperature, a new phenomenon occurs: group III vacancies form and are filled by excess As atoms, leading to surface AsGa antisites. The resulting Ga adatoms nucleate with excess As atoms at the NW edges, producing monoatomic-step islands on the {110} sidewalls of GaAs NWs. Finally, when gold atoms diffuse from the seed particle onto the {110} sidewalls during evaporation of the protective As cap, Langmuir evaporation does not take place, leaving the sidewalls of InAsSb NWs atomically flat.

17.
ACS Nano ; 13(2): 1961-1967, 2019 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-30726057

RESUMEN

Semiconductor nanocrystalline heterostructures can be produced by the immersion of semiconductor substrates into an aqueous precursor solution, but this approach usually leads to a high density of interfacial traps. In this work, we study the effect of a chemical passivation of the substrate prior to the nanocrystalline growth. PbS nanoplatelets grown on sulfur-treated InP (001) surfaces at temperatures as low as 95 °C exhibit abrupt crystalline interfaces that allow a direct and reproducible electron transfer to the InP substrate through the nanometer-thick nanoplatelets with scanning tunnelling spectroscopy. It is in sharp contrast with the less defined interface and the hysteresis of the current-voltage characteristics found without the passivation step. Based on a tunnelling effect occurring at energies below the bandgap of PbS, we show the formation of a type II, trap-free, epitaxial heterointerface, with a quality comparable to that grown on a nonreactive InP (110) substrate by molecular beam epitaxy. Our scheme offers an attractive alternative to the fabrication of semiconductor heterostructures in the gas phase.

18.
ACS Nano ; 12(5): 4754-4760, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29641894

RESUMEN

The highly oriented pyrolytic graphite (HOPG) surface, consisting of a dangling bond-free lattice, is regarded as a potential substrate for van der Waals heteroepitaxy of two-dimensional layered materials. In this work, the growth of silicon and germanium on HOPG is investigated with scanning tunneling microscopy by using typical synthesis conditions for silicene and germanene on metal surfaces. At low coverages, the deposition of Si and Ge gives rise to tiny and sparse clusters that are surrounded by a honeycomb superstructure. From the detailed analysis of the superstructure, its comparison with the one encountered on the bare and clean HOPG surface, and simulations of the electron density, we conclude that the superstructure is caused by charge density modulations in the HOPG surface. At high coverages, we find the formation of clusters, assembled in filamentary patterns, which indicates a Volmer-Weber growth mode instead of a layer-by-layer growth mode. This coverage-dependent study sets the stage for revisiting recent results alleging the synthesis of silicene and germanene on the HOPG surface.

19.
ACS Appl Mater Interfaces ; 9(23): 20179-20187, 2017 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-28534397

RESUMEN

Functionalization of Ge surfaces with the aim of incorporating specific dopant atoms to form high-quality junctions is of particular importance for the development of solid-state devices. In this study, we report the shallow doping of Ge wafers with a monolayer doping strategy that is based on the controlled grafting of Sb precursors and the subsequent diffusion of Sb into the wafer upon annealing. We also highlight the key role of citric acid in passivating the surface before its reaction with the Sb precursors and the benefit of a protective SiO2 overlayer that enables an efficient incorporation of Sb dopants with a concentration higher than 1020 cm-3. Microscopic four-point probe measurements and photoconductivity experiments show the full electrical activation of the Sb dopants, giving rise to the formation of an n++ Sb-doped layer and an enhanced local field-effect passivation at the surface of the Ge wafer.

20.
Nano Lett ; 15(10): 6440-5, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26339987

RESUMEN

The structural and electronic properties of nonstoichiometric low-temperature grown GaAs nanowire shells have been investigated with scanning tunneling microscopy and spectroscopy, pump-probe reflectivity, and cathodoluminescence measurements. The growth of nonstoichiometric GaAs shells is achieved through the formation of As antisite defects, and to a lower extent, after annealing, As precipitates. Because of the high density of atomic steps on the nanowire sidewalls, the Fermi level is pinned midgap, causing the ionization of the subsurface antisites and the formation of depleted regions around the As precipitates. Controlling their incorporation offers a way to obtain unique electronic and optical properties that depart from the ones found in conventional GaAs nanowires.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...