Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 333
Filtrar
1.
Life (Basel) ; 14(7)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39063646

RESUMEN

(1) Background: Previously, VESsel GENeration (VESGEN) software was used to map and quantify vascular changes observed on fluorescein angiography (FA) in subjects (n = 15 eyes) with retinal pathology ranging from mild non-proliferative diabetic retinopathy (NPDR) to proliferative diabetic retinopathy (PDR). In the current study, we used VESGEN for the assessment of individuals with early-stage NPDR imaged by FA (Cohort 1) and by optical coherence tomography angiography (OCTA; Cohort 2). (2) Methods: Cohort 1 included type 2 diabetics (T2D), represented 21 eyes (ranging from no DR to moderate DR), and also included nondiabetic controls (NDC; n = 15 eyes). Cohort 2 consisted of 23 eyes from T2D subjects (including no DR subjects and moderate DR subjects) and NDC (n = 18 eyes). (3) Results: In the FA-VESGEN study, total tortuosity (Tv) of microvessels (G ≥ 6) increased in T2D with mild DR compared to the controls. In contrast, the VESGEN analysis of OCTA images showed that vessel length (characterized as density) was lower in T2D subjects before the diagnosis of DR and following the diagnosis of DR when compared to the controls. Additionally, T2D showed a significant decrease in vessel area (density). (4) Conclusions: FA elucidated the vessel morphology of small-generation microvessels to a greater degree than OCTA; however, OCTA identified changes in vessel density better than FA. VESGEN analysis can be used with both standard FA and OCTA to facilitate our understanding of early events in DR, including before the clinical diagnosis of DR.

2.
Nat Rev Cardiol ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039178

RESUMEN

The accessibility of the retina with the use of non-invasive and relatively low-cost ophthalmic imaging techniques and analytics provides a unique opportunity to improve the detection, diagnosis and monitoring of systemic diseases. The National Heart, Lung, and Blood Institute conducted a workshop in October 2022 to examine this concept. On the basis of the discussions at that workshop, this Roadmap describes current knowledge gaps and new research opportunities to evaluate the relationships between the eye (in particular, retinal biomarkers) and the risk of cardiovascular diseases, including coronary artery disease, heart failure, stroke, hypertension and vascular dementia. Identified gaps include the need to simplify and standardize the capture of high-quality images of the eye by non-ophthalmic health workers and to conduct longitudinal studies using multidisciplinary networks of diverse at-risk populations with improved implementation and methods to protect participant and dataset privacy. Other gaps include improving the measurement of structural and functional retinal biomarkers, determining the relationship between microvascular and macrovascular risk factors, improving multimodal imaging 'pipelines', and integrating advanced imaging with 'omics', lifestyle factors, primary care data and radiological reports, by using artificial intelligence technology to improve the identification of individual-level risk. Future research on retinal microvascular disease and retinal biomarkers might additionally provide insights into the temporal development of microvascular disease across other systemic vascular beds.

3.
Circulation ; 150(6): 451-465, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38682338

RESUMEN

BACKGROUND: Most organs are maintained lifelong by resident stem/progenitor cells. During development and regeneration, lineage-specific stem/progenitor cells can contribute to the growth or maintenance of different organs, whereas fully differentiated mature cells have less regenerative potential. However, it is unclear whether vascular endothelial cells (ECs) are also replenished by stem/progenitor cells with EC-repopulating potential residing in blood vessels. It has been reported recently that some EC populations possess higher clonal proliferative potential and vessel-forming capacity compared with mature ECs. Nevertheless, a marker to identify vascular clonal repopulating ECs (CRECs) in murine and human individuals is lacking, and, hence, the mechanism for the proliferative, self-renewal, and vessel-forming potential of CRECs is elusive. METHODS: We analyzed colony-forming, self-renewal, and vessel-forming potential of ABCG2 (ATP binding cassette subfamily G member 2)-expressing ECs in human umbilical vessels. To study the contribution of Abcg2-expressing ECs to vessel development and regeneration, we developed Abcg2CreErt2;ROSA TdTomato mice and performed lineage tracing during mouse development and during tissue regeneration after myocardial infarction injury. RNA sequencing and chromatin methylation chromatin immunoprecipitation followed by sequencing were conducted to study the gene regulation in Abcg2-expressing ECs. RESULTS: In human and mouse vessels, ECs with higher ABCG2 expression (ABCECs) possess higher clonal proliferative potential and in vivo vessel-forming potential compared with mature ECs. These cells could clonally contribute to vessel formation in primary and secondary recipients after transplantation. These features of ABCECs meet the criteria of CRECs. Results from lineage tracing experiments confirm that Abcg2-expressing CRECs (AbcCRECs) contribute to arteries, veins, and capillaries in cardiac tissue development and vascular tissue regeneration after myocardial infarction. Transcriptome and epigenetic analyses reveal that a gene expression signature involved in angiogenesis and vessel development is enriched in AbcCRECs. In addition, various angiogenic genes, such as Notch2 and Hey2, are bivalently modified by trimethylation at the 4th and 27th lysine residue of histone H3 (H3K4me3 and H3K27me3) in AbcCRECs. CONCLUSIONS: These results are the first to establish that a single prospective marker identifies CRECs in mice and human individuals, which holds promise to provide new cell therapies for repair of damaged vessels in patients with endothelial dysfunction.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Animales , Humanos , Ratones , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/citología , Neovascularización Fisiológica , Proliferación Celular , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/genética , Infarto del Miocardio/terapia , Regeneración , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Ratones Transgénicos , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/citología , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Linaje de la Célula
4.
Health Info Libr J ; 40(4): 341-342, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37994580

RESUMEN

In this second special collection of COVID-19-related manuscripts, our focus moves from health information within academia to health librarianship in the wider context. Although COVID-19 manuscripts may still occasionally appear in the Health Information and Libraries Journal, the World Health Organisation's declaration earlier this year of an end to the global health emergency marks an intentional editorial shift to adopting a broader perspective in publishing this type of work, a focus on public health information challenges and emergency preparedness, and a return to publishing a more familiar range of health library and information contexts and practice.


Asunto(s)
COVID-19 , Bibliotecas , Bibliotecología , Humanos , Edición , Salud Global
5.
J Acad Ophthalmol (2017) ; 15(2): e243-e247, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38021032

RESUMEN

Background Beginning January 26, 2022, the U.S. Medical Licensing Exam (USMLE) Step 1 changed from a numerical score to pass/fail (P/F). The purpose of this study was to determine the perspective of ophthalmology program directors regarding this change in evaluating applicants. Methods After institutional review board approval, a survey was sent out to program directors of all 125 ophthalmology programs accredited by the Accreditation Council for Graduate Medical Education. Survey questions asked for program demographics, the utility of USMLE Step 1 and 2 Clinical Knowledge scores in assessing applicants, and the importance of 16 different applicant metrics before and after Step 1 becomes P/F. The metrics examined were: letters of recommendation; clerkship grades; class ranking; Alpha Omega Alpha Membership; Gold Humanism Honor Society Membership; Dean's Letter; involvement and leadership; personal statement; number of abstracts, presentations, and publications; mean number of research experiences in the specialty; Step 2 Clinical Knowledge score; volunteering; preclinical grades; away rotation in the specialty; the applicant having another graduate degree; and graduation from a top 40 National Institutes of Health-funded program. Data were analyzed using nonoverlapping 95% confidence intervals. Results The survey was completed by 50 (40%) program directors. Sixty-eight percent of respondents stated a student's ranking would be considered more after USMLE Step 1 scores become P/F, and 60% stated medical schools should share clerkship shelf exam scores with residency programs. There were no significant differences in program directors' rankings of applicant metrics following the transition to P/F Step 1. Conclusion Based on our data, program directors will likely not place a greater emphasis on Step 2 scores, despite it being the only remaining objective measure for all applicants following the switch to a P/F Step 1. Nevertheless, program directors expressed an interest in receiving other objective measures, such as shelf exam scores and class ranking, as part of the application process. Notably, we found no significant changes in the rankings of various applicant metrics before and after the transition to P/F Step 1, indicating that the metrics that were important to program directors prior to the change remain just as critical in the new era of admissions.

6.
Cell Rep Med ; 4(11): 101254, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37890487

RESUMEN

The post-acute sequelae of COVID-19 (PASC), also known as long COVID, is often associated with debilitating symptoms and adverse multisystem consequences. We obtain plasma samples from 117 individuals during and 6 months following their acute phase of infection to comprehensively profile and assess changes in cytokines, proteome, and metabolome. Network analysis reveals sustained inflammatory response, platelet degranulation, and cellular activation during convalescence accompanied by dysregulation in arginine biosynthesis, methionine metabolism, taurine metabolism, and tricarboxylic acid (TCA) cycle processes. Furthermore, we develop a prognostic model composed of 20 molecules involved in regulating T cell exhaustion and energy metabolism that can reliably predict adverse clinical outcomes following discharge from acute infection with 83% accuracy and an area under the curve (AUC) of 0.96. Our study reveals pertinent biological processes during convalescence that differ from acute infection, and it supports the development of specific therapies and biomarkers for patients suffering from long COVID.


Asunto(s)
COVID-19 , Síndrome Post Agudo de COVID-19 , Humanos , Convalecencia , Multiómica , Biomarcadores , Fenotipo
7.
Cells ; 12(19)2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37830574

RESUMEN

Previously, the RXR agonist UAB126 demonstrated therapeutic potential to treat obese mice by controlling blood glucose levels (BGL) and altering the expression of genes associated with lipid metabolism and inflammatory response. The purpose of the study was to assess the effects of UAB126 on the progression of diabetic retinopathy (DR) in rodent models of type 1 diabetes (T1D), streptozotocin-induced, and type 2 diabetes (T2D), in db/db mice. UAB126 treatment was delivered either by oral gavage for 6 weeks or by topical application of eye drops for 2 weeks. At the end of the treatment, the retinal function of diabetic mice was assessed by electroretinography (ERG), and their retinal tissue was harvested for protein and gene expression analyses. Bone-marrow cells were isolated and differentiated into bone marrow-derived macrophages (BMDMs). The glycolysis stress test and the 2-DG glucose uptake analysis were performed. Our results demonstrated that in the UAB126-treated diabetic BMDMs, the ECAR rate and the 2-DG uptake were improved as compared to untreated diabetic BMDMs. In UAB126-treated diabetic mice, hyperglycemia was reduced and associated with the preservation of ERG amplitudes and enhanced AMPK activity. Retinas from diabetic mice treated with topical UAB126 demonstrated an increase in Rxr and Ppar and the expression of genes associated with lipid metabolism. Altogether, our data indicate that RXR activation is beneficial to preclinical models of DR.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Retinopatía Diabética , Ratones , Animales , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/prevención & control , Retinopatía Diabética/metabolismo , Receptores X Retinoide , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/metabolismo , Modelos Animales de Enfermedad
8.
Health Info Libr J ; 40(3): 231-232, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37621204

RESUMEN

In the first of two special collections of COVID-19-related manuscripts, this issue focuses on how colleges and universities libraries and their users responded to the need for health information during the pandemic.


Asunto(s)
COVID-19 , Bibliotecas , Humanos , Pandemias , Universidades
9.
bioRxiv ; 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37577690

RESUMEN

Previously, the RXR agonist UAB126 demonstrated therapeutic potential to treat obese mice by controlling blood glucose levels (BGL) and altering the expression of genes associated with lipid metabolism and inflammatory response. The purpose of the study was to assess UAB126 effect in progression of diabetic retinopathy (DR) in rodent models of Type1 diabetes (T1D), streptozotocin-induced, and Type2 diabetes (T2D), the db/db mice. UAB126 treatment was delivered either by oral gavage for 6 weeks or by topical application of eye drops for 2 weeks. At the end of the treatment, the retinal function of diabetic mice was assessed by electroretinography (ERG), and their retinal tissue was harvested for protein and gene expression analyses. Bone-marrow cells were isolated and differentiated into bone marrow-derived macrophages (BMDMs). The glycolysis stress test and the 2-DG glucose uptake analysis were performed. Our results demonstrated that in the UAB126-treated diabetic BMDMs, the ECAR rate and the 2-DG uptake were improved as compared to untreated diabetic BMDMs. In UAB126-treated diabetic mice, hyperglycemia was reduced and associated with the preservation of ERG amplitudes and enhanced AMPK activity. Retinas from diabetic mice treated with topical UAB126 demonstrated an increase in Rxr and Ppar, and expression of genes associated with lipid metabolism. Altogether, our data indicate that RXR activation is beneficial to preclinical models of DR.

10.
Health Info Libr J ; 40(2): 123-124, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37431866

RESUMEN

Searching for health information is a core activity for health library and knowledge workers, whether seeking to support health care workers in overcoming barriers to accessing drug information, exploring the potential of text mining in developing search filters, translating search filters for use on alternative databases, or the importance of updating search filters to ensure their ongoing utility.


Asunto(s)
Personal de Salud , Conducta en la Búsqueda de Información , Bibliotecas , Humanos , Bases de Datos Factuales , Conocimiento , Minería de Datos
11.
Diabetologia ; 66(9): 1705-1718, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37311879

RESUMEN

AIMS/HYPOTHESIS: Hyper-reflective crystalline deposits found in retinal lesions have been suggested to predict the progression of diabetic retinopathy, but the nature of these structures remains unknown. METHODS: Scanning electron microscopy and immunohistochemistry were used to identify cholesterol crystals (CCs) in human donor, pig and mouse tissue. The effects of CCs were analysed in bovine retinal endothelial cells in vitro and in db/db mice in vivo using quantitative RT-PCR, bulk RNA sequencing, and cell death and permeability assays. Cholesterol homeostasis was determined using 2H2O and 2H7-cholesterol. RESULTS: We identified hyper-reflective crystalline deposits in human diabetic retina as CCs. Similarly, CCs were found in the retina of a diabetic mouse model and a high-cholesterol diet-fed pig model. Cell culture studies demonstrated that treatment of retinal cells with CCs can recapitulate all major pathogenic mechanisms leading to diabetic retinopathy, including inflammation, cell death and breakdown of the blood-retinal barrier. Fibrates, statins and α-cyclodextrin effectively dissolved CCs present in in vitro models of diabetic retinopathy, and prevented CC-induced endothelial pathology. Treatment of a diabetic mouse model with α-cyclodextrin reduced cholesterol levels and CC formation in the retina, and prevented diabetic retinopathy. CONCLUSIONS/INTERPRETATION: We established that cholesterol accumulation and CC formation are a unifying pathogenic mechanism in the development of diabetic retinopathy.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , alfa-Ciclodextrinas , Animales , Bovinos , Ratones , Humanos , Porcinos , Retinopatía Diabética/metabolismo , alfa-Ciclodextrinas/efectos adversos , alfa-Ciclodextrinas/metabolismo , Células Endoteliales/metabolismo , Diabetes Mellitus Experimental/metabolismo , Retina/metabolismo , Modelos Animales de Enfermedad , Colesterol/metabolismo
12.
Health Info Libr J ; 40(2): 217, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37249090

RESUMEN

Dissertations into Practice is changing. Details on how those new to health information, library and knowledge work can get involved coming shortly.


Asunto(s)
Conocimiento , Bibliotecólogos , Bibliotecas Médicas , Humanos
13.
Blood ; 142(6): 574-588, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37192295

RESUMEN

Tyrosine kinase inhibitors (TKIs) are very effective in treating chronic myelogenous leukemia (CML), but primitive, quiescent leukemia stem cells persist as a barrier to the cure. We performed a comprehensive evaluation of metabolic adaptation to TKI treatment and its role in CML hematopoietic stem and progenitor cell persistence. Using a CML mouse model, we found that glycolysis, glutaminolysis, the tricarboxylic acid cycle, and oxidative phosphorylation (OXPHOS) were initially inhibited by TKI treatment in CML-committed progenitors but were restored with continued treatment, reflecting both selection and metabolic reprogramming of specific subpopulations. TKI treatment selectively enriched primitive CML stem cells with reduced metabolic gene expression. Persistent CML stem cells also showed metabolic adaptation to TKI treatment through altered substrate use and mitochondrial respiration maintenance. Evaluation of transcription factors underlying these changes helped detect increased HIF-1 protein levels and activity in TKI-treated stem cells. Treatment with an HIF-1 inhibitor in combination with TKI treatment depleted murine and human CML stem cells. HIF-1 inhibition increased mitochondrial activity and reactive oxygen species (ROS) levels, reduced quiescence, increased cycling, and reduced the self-renewal and regenerating potential of dormant CML stem cells. We, therefore, identified the HIF-1-mediated inhibition of OXPHOS and ROS and maintenance of CML stem cell dormancy and repopulating potential as a key mechanism of CML stem cell adaptation to TKI treatment. Our results identify a key metabolic dependency in CML stem cells persisting after TKI treatment that can be targeted to enhance their elimination.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Proteínas Tirosina Quinasas , Ratones , Humanos , Animales , Proteínas Tirosina Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Células Madre Neoplásicas/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Resistencia a Antineoplásicos
14.
Transl Vis Sci Technol ; 12(4): 20, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37070938

RESUMEN

Purpose: The expression of silent information regulator (SIRT) 1 is reduced in diabetic retinopathy (DR). Previous studies showed that alterations in SIRT1 messenger RNA (mRNA) and protein expression are implicated in progressive inflammation and formation of retinal acellular capillaries. Treatment with the SIRT1 agonist, SRT1720, improved visual response by restoration of a- and b-wave responses on electroretinogram scotopic measurements in diabetic (db/db) mice. In this study, we investigated the effects of intravitreal SIRT1 delivery on diabetic retinal pathology. Methods: Nine-month-old db/db mice received one intravitreal injection of either AAV2-SIRT1 or AAV2-GFP control virus, and after 3 months, electroretinography and optomotor responses were measured. Their eyes were then removed and analyzed by immunohistochemistry and flow cytometry. Results: SIRT1 mRNA and protein levels were increased following AAV2-SIRT1 administration compared to control virus AAV2-GFP injected mice. IBA1+ and caspase 3 expression were decreased in retinas of db/db mice injected with AAV2-SIRT1, and reductions in scotopic a- and b-waves and high spatial frequency in optokinetic response were prevented. Retinal hypoxia inducible factor 1α (HIF-1α) protein levels were reduced in the AAV2-SIRT1-injected mice compared to control-injected mice. Using flow cytometry to assess changes in intracellular HIF-1α levels, endothelial cells (CD31+) from AAV-2 SIRT1 injected mice demonstrated reduced HIF-1α expression compared to db/db mice injected with the control virus. Conclusions: Intravitreal AAV2-SIRT1 delivery increased retina SIRT1 and transduced neural and endothelial cells, thus reversing functional damage and improving overall visual function. Translational Relevance: AAV2-SIRT1 gene therapy represents a beneficial approach for the treatment of chronic retinal conditions such as DR.


Asunto(s)
Diabetes Mellitus Tipo 2 , Retinopatía Diabética , Ratones , Animales , Retinopatía Diabética/genética , Retinopatía Diabética/terapia , Sirtuina 1/genética , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/terapia , Células Endoteliales/metabolismo , Modelos Animales de Enfermedad , ARN Mensajero
15.
Mol Ther ; 31(7): 2042-2055, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37016576

RESUMEN

We reported previously that ß-site amyloid precursor protein cleaving enzyme (BACE1) is strongly expressed in the normal retina and that BACE1-/- mice develop pathological phenotypes associated with age-related macular degeneration (AMD). BACE1 expression is increased within the neural retina and retinal pigment epithelium (RPE) in AMD donor eyes suggesting that increased BACE1 is compensatory. We observed that AAV-mediated BACE1 overexpression in the RPE was maintained up to 6 months after AAV1-BACE1 administration. No significant changes in normal mouse visual function or retinal morphology were observed with low-dose vector while the high-dose vector demonstrated some early pathology which regressed with time. No increase in ß-amyloid was observed. BACE1 overexpression in the RPE of the superoxide dismutase 2 knockdown (SOD2 KD) mouse, which exhibits an AMD-like phenotype, prevented loss of retinal function and retinal pathology, and this was sustained out to 6 months. Furthermore, BACE1 overexpression was able to inhibit oxidative stress, microglial changes, and loss of RPE tight junction integrity (all features of AMD) in SOD2 KD mice. In conclusion, BACE1 plays a key role in retina/RPE homeostasis, and BACE1 overexpression offers a novel therapeutic target in the treatment of AMD.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide , Degeneración Macular , Animales , Ratones , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/genética , Degeneración Macular/genética , Degeneración Macular/prevención & control , Retina/metabolismo , Epitelio Pigmentado de la Retina/metabolismo
16.
J Clin Med ; 12(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36902558

RESUMEN

Intestinal lymphatic, known as lacteal, plays a critical role in maintaining intestinal homeostasis by regulating several key functions, including the absorption of dietary lipids, immune cell trafficking, and interstitial fluid balance in the gut. The absorption of dietary lipids relies on lacteal integrity, mediated by button-like and zipper-like junctions. Although the intestinal lymphatic system is well studied in many diseases, including obesity, the contribution of lacteals to the gut-retinal axis in type 1 diabetes (T1D) has not been examined. Previously, we showed that diabetes induces a reduction in intestinal angiotensin-converting enzyme 2 (ACE2), leading to gut barrier disruption. However, when ACE2 levels are maintained, a preservation of gut barrier integrity occurs, resulting in less systemic inflammation and a reduction in endothelial cell permeability, ultimately retarding the development of diabetic complications, such as diabetic retinopathy. Here, we examined the impact of T1D on intestinal lymphatics and circulating lipids and tested the impact of intervention with ACE-2-expressing probiotics on key aspects of gut and retinal function. Akita mice with 6 months of diabetes were orally gavaged LP-ACE2 (3x/week for 3 months), an engineered probiotic (Lactobacillus paracasei; LP) expressing human ACE2. After three months, immunohistochemistry (IHC) was used to evaluate intestinal lymphatics, gut epithelial, and endothelial barrier integrity. Retinal function was assessed using visual acuity, electroretinograms, and enumeration of acellular capillaries. LP-ACE2 significantly restored intestinal lacteal integrity as assessed by the increased expression of lymphatic vessel hyaluronan receptor 1 (LYVE-1) expression in LP-ACE2-treated Akita mice. This was accompanied by improved gut epithelial (Zonula occludens-1 (ZO-1), p120-catenin) and endothelial (plasmalemma vesicular protein -1 (PLVAP1)) barrier integrity. In Akita mice, the LP-ACE2 treatment reduced plasma levels of LDL cholesterol and increased the expression of ATP-binding cassette subfamily G member 1 (ABCG1) in retinal pigment epithelial cells (RPE), the population of cells responsible for lipid transport from the systemic circulation into the retina. LP-ACE2 also corrected blood-retinal barrier (BRB) dysfunction in the neural retina, as observed by increased ZO-1 and decreased VCAM-1 expression compared to untreated mice. LP-ACE2-treated Akita mice exhibit significantly decreased numbers of acellular capillaries in the retina. Our study supports the beneficial role of LP-ACE2 in the restoration of intestinal lacteal integrity, which plays a key role in gut barrier integrity and systemic lipid metabolism and decreased diabetic retinopathy severity.

17.
Blood Adv ; 7(15): 4200-4214, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-36920790

RESUMEN

Several independent lines of evidence suggest that megakaryocytes are dysfunctional in severe COVID-19. Herein, we characterized peripheral circulating megakaryocytes in a large cohort of inpatients with COVID-19 and correlated the subpopulation frequencies with clinical outcomes. Using peripheral blood, we show that megakaryocytes are increased in the systemic circulation in COVID-19, and we identify and validate S100A8/A9 as a defining marker of megakaryocyte dysfunction. We further reveal a subpopulation of S100A8/A9+ megakaryocytes that contain severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) protein and RNA. Using flow cytometry of peripheral blood and in vitro studies on SARS-CoV-2-infected primary human megakaryocytes, we demonstrate that megakaryocytes can transfer viral antigens to emerging platelets. Mechanistically, we show that SARS-CoV-2-containing megakaryocytes are nuclear factor κB (NF-κB)-activated, via p65 and p52; express the NF-κB-mediated cytokines interleukin-6 (IL-6) and IL-1ß; and display high surface expression of Toll-like receptor 2 (TLR2) and TLR4, canonical drivers of NF-κB. In a cohort of 218 inpatients with COVID-19, we correlate frequencies of megakaryocyte subpopulations with clinical outcomes and show that SARS-CoV-2-containing megakaryocytes are a strong risk factor for mortality and multiorgan injury, including respiratory failure, mechanical ventilation, acute kidney injury, thrombotic events, and intensive care unit admission. Furthermore, we show that SARS-CoV-2+ megakaryocytes are present in lung and brain autopsy tissues from deceased donors who had COVID-19. To our knowledge, this study offers the first evidence implicating SARS-CoV-2+ peripheral megakaryocytes in severe disease and suggests that circulating megakaryocytes warrant investigation in inflammatory disorders beyond COVID-19.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Megacariocitos/metabolismo , FN-kappa B/metabolismo , Pulmón/metabolismo
18.
Am J Pathol ; 193(11): 1789-1808, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36965774

RESUMEN

This study investigated retinal changes in a Western diet (WD)-induced nonhuman primate model of type 2 diabetes. Rhesus nonhuman primates, aged 15 to 17 years, were fed a high-fat diet (n = 7) for >5 years reflective of the traditional WD. Age-matched controls (n = 6) were fed a standard laboratory primate diet. Retinal fundus photography, optical coherence tomography, autofluorescence imaging, and fluorescein angiography were performed before euthanasia. To assess diabetic retinopathy (DR), eyes were examined using trypsin digests, lipofuscin autofluorescence, and multimarker immunofluorescence on cross-sections and whole mounts. Retinal imaging showed venous engorgement and tortuosity, aneurysms, macular exudates, dot and blot hemorrhages, and a marked increase in fundus autofluorescence. Post-mortem changes included the following: decreased CD31 blood vessel density (P < 0.05); increased acellular capillaries (P < 0.05); increased density of ionized calcium-binding adaptor molecule expressing amoeboid microglia/macrophage; loss of regular distribution in stratum and spacing typical of ramified microglia; and increased immunoreactivity of aquaporin 4 and glial fibrillary acidic protein (P < 0.05). However, rhodopsin immunoreactivity (P < 0.05) in rods and neuronal nuclei antibody-positive neuronal density of 50% (P < 0.05) were decreased. This is the first report of a primate model of DR solely induced by a WD that replicates key features of human DR.


Asunto(s)
Diabetes Mellitus Tipo 2 , Retinopatía Diabética , Animales , Humanos , Retinopatía Diabética/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Dieta Occidental , Vasos Retinianos/metabolismo , Primates , Tomografía de Coherencia Óptica/métodos
19.
Health Info Libr J ; 40(1): 1-2, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36995251

RESUMEN

The rigours of the past few years have demonstrated the importance of good health literacy levels with the imperative of being able to obtain and interpret information to maintain and improve one's health never more apparent. With this in mind, this issue is focused on consumer health information, the gender and population group differences that exist in information seeking behaviour, the challenges of understanding medical explanations and terminology, and existing criteria to assess and ultimately produce better consumer health information.


Asunto(s)
Información de Salud al Consumidor , Alfabetización en Salud , Humanos , Conducta en la Búsqueda de Información
20.
PLoS One ; 18(1): e0280161, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36662715

RESUMEN

Society challenges higher education institutions and their members to generate inclusive communities to enable the full development of all members. This study aims to analyze who is responsible for generating inclusion according to community members from a traditional Chilean University. We carried out qualitative research based on the Grounded Theory. We collected data through focus group and semi-structured Interviews, involving 14 undergraduate students, two post-graduate students, 17 faculty members, five non-teaching staff members, and nine executives officers. All of thembelonging to the three campuses of the University. We analyzed data using ATLAS.ti 7.5.7, using the constant comparison method and reaching an axial codification level. From the data analysis, 25 subcategories emerged, grouped into six categories. Later we organized them under the codification paradigm. Results highlighted the perception of the interaction and influence of the social, institutional, and personal fields in the inclusion phenomenon. Also, that inclusive practices must be a responsibility shared among different educational community members.


Asunto(s)
Docentes , Humanos , Universidades , Investigación Cualitativa , Grupos Focales , Chile
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA