Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pharmacol Exp Ther ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117460

RESUMEN

Lenacapavir (LEN), a long-acting injectable, is the first approved human immunodeficiency virus type 1 capsid inhibitor and one of a few FDA-approved drugs that exhibit atropisomerism. LEN exists as a mixture of two class 2 atropisomers that interconvert at a fast rate (t1/2 <2 hours) with a ratio that is stable over time and unaffected by enzymes or binding to proteins in plasma. LEN exhibits low systemic clearance (CL) in nonclinical species and humans; however, in all species the observed CL was higher than the in vitro predicted CL. The volume of distribution was moderate in nonclinical species and consistent with the tissue distribution observed by whole body autoradiography in rats. LEN does not distribute to brain, consistent with being a P-glycoprotein (P-gp) substrate. Mechanistic drug disposition studies with [14C]LEN in IV-dosed BDC rats and dogs showed a substantial amount of unchanged LEN (31 - 60% of dose) excreted in feces, indicating that intestinal excretion (IE) was a major clearance pathway for LEN in both species. Coadministration of oral elacridar, a P-gp inhibitor, in rats decreased CL and IE of LEN. Renal excretion was <1% of dose in both species. In plasma, almost all radioactivity was unchanged LEN. Low levels of metabolites in excreta included LEN-conjugates with glutathione, pentose, and glucuronic acid, which were consistent with metabolites formed in vitro in Hµrel® hepatocyte co­cultures and those observed in human. Our studies highlight the importance of IE for efflux substrates that are highly metabolically stable compounds with slow elimination rates. Significance Statement LEN is a long-acting injectable that exists as conformationally stable atropisomers. Due to an atropisomeric interconversion rate that significantly exceeds the in vivo elimination rate, the atropisomer ratio of LEN remains constant in circulation. The disposition of LEN highlights that intestinal excretion has a substantial part in the elimination of compounds that are metabolically highly stable and efflux transporter substrates.

2.
Clin Pharmacokinet ; 63(2): 241-253, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38236562

RESUMEN

BACKGROUND AND OBJECTIVE: Lenacapavir (LEN) is a novel, first-in-class, multistage, selective inhibitor of human immunodeficiency virus type 1 (HIV-1) capsid function recently approved for the treatment of HIV-1 infection in heavily treatment-experienced adults with multidrug-resistant HIV-1 infection. The purpose of this multicohort study was to evaluate the pharmacokinetics, metabolism, excretion, safety, and tolerability of LEN following a single intravenous (IV) infusion of 10 mg LEN or 20 mg [14C]LEN in healthy participants. METHODS: Twenty-one healthy adult participants were enrolled into the study and received either a single IV dose of 10 mg LEN (n = 8 active, n = 3 placebo; cohort 1) or a single IV dose of 20 mg [14C]LEN containing 200 µCi (n = 10; cohort 2). Blood, urine, and feces samples (when applicable) were collected after dosing, and radioactivity (cohort 2) was assessed using liquid scintillation counting in both plasma and excreta. LEN in plasma was quantified by liquid chromatography (LC) tandem mass spectroscopy (MS/MS) method bioanalysis. Metabolite profiling in plasma and excreta were performed using LC-fraction collect (FC)-high-resolution MS and LC-FC-accelerator mass spectrometry in plasma. RESULTS: Between the 10 mg and 20 mg doses of LEN, the observed plasma exposure of LEN doubled, while the elimination half-life was similar. Following administration of 20 mg [14C]LEN (200 µCi), the mean cumulative recovery of [14C] radioactivity was 75.9% and 0.24% from feces and urine, respectively. The mean whole [14C] blood-to-plasma concentration ratio was 0.5-0.7, which showed a low distribution of LEN to red blood cells. Intact LEN was the predominant circulating species in plasma (representing 68.8% of circulating radioactivity), and no single metabolite contributed to > 10% of total radioactivity exposure through 1176 h postdose. Similarly, intact LEN was the most abundant component (32.9% of administered dose; 75.9% of recovered dose) measured in feces, with metabolites accounting for trace amounts. These results suggest metabolism of LEN is not a primary pathway of elimination. Of the metabolites observed in the feces, the three most abundant metabolites were direct phase 2 conjugates (glucuronide, hexose, and pentose conjugates), with additional metabolites formed to a lesser extent via other pathways. The administered LEN IV doses were generally safe and well-tolerated across participants in this study. CONCLUSIONS: The results of this mass balance study indicated that LEN was majorly eliminated as intact LEN via the feces. The renal pathway played a minor role in LEN elimination (0.24%). In addition, no major circulating metabolites in plasma or feces were found, indicating minimal metabolism of LEN.


Asunto(s)
Fármacos Anti-VIH , VIH-1 , Adulto , Humanos , Infusiones Intravenosas , Cápside , Voluntarios Sanos , Espectrometría de Masas en Tándem , Biotransformación , Heces/química , Administración Oral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA