Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 258
1.
Cell Signal ; 113: 110958, 2024 01.
Article En | MEDLINE | ID: mdl-37935340

Microenvironment signals are potent determinants of cell fate and arbiters of tissue homeostasis, however understanding how different microenvironment factors coordinately regulate cellular phenotype has been experimentally challenging. Here we used a high-throughput microenvironment microarray comprised of 2640 unique pairwise signals to identify factors that support proliferation and maintenance of primary human mammary luminal epithelial cells. Multiple microenvironment factors that modulated luminal cell number were identified, including: HGF, NRG1, BMP2, CXCL1, TGFB1, FGF2, PDGFB, RANKL, WNT3A, SPP1, HA, VTN, and OMD. All of these factors were previously shown to modulate luminal cell numbers in painstaking mouse genetics experiments, or were shown to have a role in breast cancer, demonstrating the relevance and power of our high-dimensional approach to dissect key microenvironmental signals. RNA-sequencing of primary epithelial and stromal cell lineages identified the cell types that express these signals and the cognate receptors in vivo. Cell-based functional studies confirmed which effects from microenvironment factors were reproducible and robust to individual variation. Hepatocyte growth factor (HGF) was the factor most robust to individual variation and drove expansion of luminal cells via cKit+ progenitor cells, which expressed abundant MET receptor. Luminal cells from women who are genetically high risk for breast cancer had significantly more MET receptor and may explain the characteristic expansion of the luminal lineage in those women. In ensemble, our approach provides proof of principle that microenvironment signals that control specific cellular states can be dissected with high-dimensional cell-based approaches.


Breast Neoplasms , Epithelial Cells , Female , Humans , Animals , Mice , Epithelial Cells/metabolism , Cell Differentiation , Breast Neoplasms/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Tumor Microenvironment
2.
bioRxiv ; 2023 Nov 27.
Article En | MEDLINE | ID: mdl-38076794

Machine learning approaches have the potential for meaningful impact in the biomedical field. However, there are often challenges unique to biomedical data that prohibits the adoption of these innovations. For example, limited data, data volatility, and data shifts all compromise model robustness and generalizability. Without proper tuning and data management, deploying machine learning models in the presence of unaccounted for corruptions leads to reduced or misleading performance. This study explores techniques to enhance model generalizability through iterative adjustments. Specifically, we investigate a detection tasks using electron microscopy images and compare models trained with different normalization and augmentation techniques. We found that models trained with Group Normalization or texture data augmentation outperform other normalization techniques and classical data augmentation, enabling them to learn more generalized features. These improvements persist even when models are trained and tested on disjoint datasets acquired through diverse data acquisition protocols. Results hold true for transformerand convolution-based detection architectures. The experiments show an impressive 29% boost in average precision, indicating significant enhancements in the model's generalizibality. This underscores the models' capacity to effectively adapt to diverse datasets and demonstrates their increased resilience in real-world applications.

3.
Front Bioinform ; 3: 1275402, 2023.
Article En | MEDLINE | ID: mdl-37928169

Introduction: Tissue-based sampling and diagnosis are defined as the extraction of information from certain limited spaces and its diagnostic significance of a certain object. Pathologists deal with issues related to tumor heterogeneity since analyzing a single sample does not necessarily capture a representative depiction of cancer, and a tissue biopsy usually only presents a small fraction of the tumor. Many multiplex tissue imaging platforms (MTIs) make the assumption that tissue microarrays (TMAs) containing small core samples of 2-dimensional (2D) tissue sections are a good approximation of bulk tumors although tumors are not 2D. However, emerging whole slide imaging (WSI) or 3D tumor atlases that use MTIs like cyclic immunofluorescence (CyCIF) strongly challenge this assumption. In spite of the additional insight gathered by measuring the tumor microenvironment in WSI or 3D, it can be prohibitively expensive and time-consuming to process tens or hundreds of tissue sections with CyCIF. Even when resources are not limited, the criteria for region of interest (ROI) selection in tissues for downstream analysis remain largely qualitative and subjective as stratified sampling requires the knowledge of objects and evaluates their features. Despite the fact TMAs fail to adequately approximate whole tissue features, a theoretical subsampling of tissue exists that can best represent the tumor in the whole slide image. Methods: To address these challenges, we propose deep learning approaches to learn multi-modal image translation tasks from two aspects: 1) generative modeling approach to reconstruct 3D CyCIF representation and 2) co-embedding CyCIF image and Hematoxylin and Eosin (H&E) section to learn multi-modal mappings by a cross-domain translation for minimum representative ROI selection. Results and discussion: We demonstrate that generative modeling enables a 3D virtual CyCIF reconstruction of a colorectal cancer specimen given a small subset of the imaging data at training time. By co-embedding histology and MTI features, we propose a simple convex optimization for objective ROI selection. We demonstrate the potential application of ROI selection and the efficiency of its performance with respect to cellular heterogeneity.

4.
bioRxiv ; 2023 Nov 01.
Article En | MEDLINE | ID: mdl-37961180

Electron microscopy (EM) enables imaging at nanometer resolution and can shed light on how cancer evolves to develop resistance to therapy. Acquiring these images has become a routine task; however, analyzing them is now the bottleneck, as manual structure identification is very time-consuming and can take up to several months for a single sample. Deep learning approaches offer a suitable solution to speed up the analysis. In this work, we present a study of several state-of-the-art deep learning models for the task of segmenting nuclei and nucleoli in volumes from tumor biopsies. We compared previous results obtained with the ResUNet architecture to the more recent UNet++, FracTALResNet, SenFormer, and CEECNet models. In addition, we explored the utilization of unlabeled images through semi-supervised learning with Cross Pseudo Supervision. We have trained and evaluated all of the models on sparse manual labels from three fully annotated in-house datasets that we have made available on demand, demonstrating improvements in terms of 3D Dice score. From the analysis of these results, we drew conclusions on the relative gains of using more complex models, semi-supervised learning as well as next steps for the mitigation of the manual segmentation bottleneck.

5.
bioRxiv ; 2023 Nov 05.
Article En | MEDLINE | ID: mdl-37745323

Cells are fundamental units of life, constantly interacting and evolving as dynamical systems. While recent spatial multi-omics can quantitate individual cells' characteristics and regulatory programs, forecasting their evolution ultimately requires mathematical modeling. We develop a conceptual framework-a cell behavior hypothesis grammar-that uses natural language statements (cell rules) to create mathematical models. This allows us to systematically integrate biological knowledge and multi-omics data to make them computable. We can then perform virtual "thought experiments" that challenge and extend our understanding of multicellular systems, and ultimately generate new testable hypotheses. In this paper, we motivate and describe the grammar, provide a reference implementation, and demonstrate its potential through a series of examples in tumor biology and immunotherapy. Altogether, this approach provides a bridge between biological, clinical, and systems biology researchers for mathematical modeling of biological systems at scale, allowing the community to extrapolate from single-cell characterization to emergent multicellular behavior.

6.
Nat Commun ; 14(1): 5665, 2023 09 13.
Article En | MEDLINE | ID: mdl-37704631

Triple-negative breast cancer (TNBC) patients have a poor prognosis and few treatment options. Mouse models of TNBC are important for development of new therapies, however, few mouse models represent the complexity of TNBC. Here, we develop a female TNBC murine model by mimicking two common TNBC mutations with high co-occurrence: amplification of the oncogene MYC and deletion of the tumor suppressor PTEN. This Myc;Ptenfl model develops heterogeneous triple-negative mammary tumors that display histological and molecular features commonly found in human TNBC. Our research involves deep molecular and spatial analyses on Myc;Ptenfl tumors including bulk and single-cell RNA-sequencing, and multiplex tissue-imaging. Through comparison with human TNBC, we demonstrate that this genetic mouse model develops mammary tumors with differential survival and therapeutic responses that closely resemble the inter- and intra-tumoral and microenvironmental heterogeneity of human TNBC, providing a pre-clinical tool for assessing the spectrum of patient TNBC biology and drug response.


Mammary Neoplasms, Animal , Triple Negative Breast Neoplasms , Animals , Female , Humans , Mice , Aggression , Disease Models, Animal , Mutation , PTEN Phosphohydrolase/genetics , Triple Negative Breast Neoplasms/genetics , Proto-Oncogene Proteins c-myc/metabolism
8.
Clin Cancer Res ; 29(18): 3668-3680, 2023 09 15.
Article En | MEDLINE | ID: mdl-37439796

PURPOSE: Urinary comprehensive genomic profiling (uCGP) uses next-generation sequencing to identify mutations associated with urothelial carcinoma and has the potential to improve patient outcomes by noninvasively diagnosing disease, predicting grade and stage, and estimating recurrence risk. EXPERIMENTAL DESIGN: This is a multicenter case-control study using banked urine specimens collected from patients undergoing initial diagnosis/hematuria workup or urothelial carcinoma surveillance. A total of 581 samples were analyzed by uCGP: 333 for disease classification and grading algorithm development, and 248 for blinded validation. uCGP testing was done using the UroAmp platform, which identifies five classes of mutation: single-nucleotide variants, copy-number variants, small insertion-deletions, copy-neutral loss of heterozygosity, and aneuploidy. UroAmp algorithms predicting urothelial carcinoma tumor presence, grade, and recurrence risk were compared with cytology, cystoscopy, and pathology. RESULTS: uCGP algorithms had a validation sensitivity/specificity of 95%/90% for initial cancer diagnosis in patients with hematuria and demonstrated a negative predictive value (NPV) of 99%. A positive diagnostic likelihood ratio (DLR) of 9.2 and a negative DLR of 0.05 demonstrate the ability to risk-stratify patients presenting with hematuria. In surveillance patients, binary urothelial carcinoma classification demonstrated an NPV of 91%. uCGP recurrence-risk prediction significantly prognosticated future recurrence (hazard ratio, 6.2), whereas clinical risk factors did not. uCGP demonstrated positive predictive value (PPV) comparable with cytology (45% vs. 42%) with much higher sensitivity (79% vs. 25%). Finally, molecular grade predictions had a PPV of 88% and a specificity of 95%. CONCLUSIONS: uCGP enables noninvasive, accurate urothelial carcinoma diagnosis and risk stratification in both hematuria and urothelial carcinoma surveillance patients.


Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Hematuria/diagnosis , Hematuria/genetics , Case-Control Studies , Biomarkers, Tumor/genetics , Sensitivity and Specificity , Genomics
9.
Front Bioinform ; 3: 1308707, 2023.
Article En | MEDLINE | ID: mdl-38162122

Electron microscopy (EM) enables imaging at a resolution of nanometers and can shed light on how cancer evolves to develop resistance to therapy. Acquiring these images has become a routine task.However, analyzing them is now a bottleneck, as manual structure identification is very time-consuming and can take up to several months for a single sample. Deep learning approaches offer a suitable solution to speed up the analysis. In this work, we present a study of several state-of-the-art deep learning models for the task of segmenting nuclei and nucleoli in volumes from tumor biopsies. We compared previous results obtained with the ResUNet architecture to the more recent UNet++, FracTALResNet, SenFormer, and CEECNet models. In addition, we explored the utilization of unlabeled images through semi-supervised learning with Cross Pseudo Supervision. We have trained and evaluated all of the models on sparse manual labels from three fully annotated in-house datasets that we have made available on demand, demonstrating improvements in terms of 3D Dice score. From the analysis of these results, we drew conclusions on the relative gains of using more complex models, and semi-supervised learning as well as the next steps for the mitigation of the manual segmentation bottleneck.

10.
Front Bioinform ; 3: 1308708, 2023.
Article En | MEDLINE | ID: mdl-38162124

Focused ion beam-scanning electron microscopy (FIB-SEM) images can provide a detailed view of the cellular ultrastructure of tumor cells. A deeper understanding of their organization and interactions can shed light on cancer mechanisms and progression. However, the bottleneck in the analysis is the delineation of the cellular structures to enable quantitative measurements and analysis. We mitigated this limitation using deep learning to segment cells and subcellular ultrastructure in 3D FIB-SEM images of tumor biopsies obtained from patients with metastatic breast and pancreatic cancers. The ultrastructures, such as nuclei, nucleoli, mitochondria, endosomes, and lysosomes, are relatively better defined than their surroundings and can be segmented with high accuracy using a neural network trained with sparse manual labels. Cell segmentation, on the other hand, is much more challenging due to the lack of clear boundaries separating cells in the tissue. We adopted a multi-pronged approach combining detection, boundary propagation, and tracking for cell segmentation. Specifically, a neural network was employed to detect the intracellular space; optical flow was used to propagate cell boundaries across the z-stack from the nearest ground truth image in order to facilitate the separation of individual cells; finally, the filopodium-like protrusions were tracked to the main cells by calculating the intersection over union measure for all regions detected in consecutive images along z-stack and connecting regions with maximum overlap. The proposed cell segmentation methodology resulted in an average Dice score of 0.93. For nuclei, nucleoli, and mitochondria, the segmentation achieved Dice scores of 0.99, 0.98, and 0.86, respectively. The segmentation of FIB-SEM images will enable interpretative rendering and provide quantitative image features to be associated with relevant clinical variables.

11.
J Clin Med ; 11(19)2022 Sep 30.
Article En | MEDLINE | ID: mdl-36233691

The clinical standard of care for urothelial carcinoma (UC) relies on invasive procedures with suboptimal performance. To enhance UC treatment, we developed a urinary comprehensive genomic profiling (uCGP) test, UroAmplitude, that measures mutations from tumor DNA present in urine. In this study, we performed a blinded, prospective validation of technical sensitivity and positive predictive value (PPV) using reference standards, and found at 1% allele frequency, mutation detection performs at 97.4% sensitivity and 80.4% PPV. We then prospectively compared the mutation profiles of urine-extracted DNA to those of matched tumor tissue to validate clinical performance. Here, we found tumor single-nucleotide variants were observed in the urine with a median concordance of 91.7% and uCGP revealed distinct patterns of genomic lesions enriched in low- and high-grade disease. Finally, we retrospectively explored longitudinal case studies to quantify residual disease following bladder-sparing treatments, and found uCGP detected residual disease in patients receiving bladder-sparing treatment and predicted recurrence and disease progression. These findings demonstrate the potential of the UroAmplitude platform to reliably identify and track mutations associated with UC at each stage of disease: diagnosis, treatment, and surveillance. Multiple case studies demonstrate utility for patient risk classification to guide both surgical and therapeutic interventions.

12.
Commun Biol ; 5(1): 1066, 2022 10 07.
Article En | MEDLINE | ID: mdl-36207580

The phenotype of a cell and its underlying molecular state is strongly influenced by extracellular signals, including growth factors, hormones, and extracellular matrix proteins. While these signals are normally tightly controlled, their dysregulation leads to phenotypic and molecular states associated with diverse diseases. To develop a detailed understanding of the linkage between molecular and phenotypic changes, we generated a comprehensive dataset that catalogs the transcriptional, proteomic, epigenomic and phenotypic responses of MCF10A mammary epithelial cells after exposure to the ligands EGF, HGF, OSM, IFNG, TGFB and BMP2. Systematic assessment of the molecular and cellular phenotypes induced by these ligands comprise the LINCS Microenvironment (ME) perturbation dataset, which has been curated and made publicly available for community-wide analysis and development of novel computational methods ( synapse.org/LINCS_MCF10A ). In illustrative analyses, we demonstrate how this dataset can be used to discover functionally related molecular features linked to specific cellular phenotypes. Beyond these analyses, this dataset will serve as a resource for the broader scientific community to mine for biological insights, to compare signals carried across distinct molecular modalities, and to develop new computational methods for integrative data analysis.


Epidermal Growth Factor , Proteomics , Epidermal Growth Factor/pharmacology , Extracellular Matrix Proteins , Ligands , Phenotype
13.
PLoS Comput Biol ; 18(9): e1010505, 2022 09.
Article En | MEDLINE | ID: mdl-36178966

Recent state-of-the-art multiplex imaging techniques have expanded the depth of information that can be captured within a single tissue sample by allowing for panels with dozens of markers. Despite this increase in capacity, space on the panel is still limited due to technical artifacts, tissue loss, and long imaging acquisition time. As such, selecting which markers to include on a panel is important, since removing important markers will result in a loss of biologically relevant information, but identifying redundant markers will provide a room for other markers. To address this, we propose computational approaches to determine the amount of shared information between markers and select an optimally reduced panel that captures maximum amount of information with the fewest markers. Here we examine several panel selection approaches and evaluate them based on their ability to reconstruct the full panel images and information within breast cancer tissue microarray datasets using cyclic immunofluorescence as a proof of concept. We show that all methods perform adequately and can re-capture cell types using only 18 of 25 markers (72% of the original panel size). The correlation-based selection methods achieved the best single-cell marker mean intensity predictions with a Spearman correlation of 0.90 with the reduced panel. Using the proposed methods shown here, it is possible for researchers to design more efficient multiplex imaging panels that maximize the amount of information retained with the limited number of markers with respect to certain evaluation metrics and architecture biases.


Breast Neoplasms , Artifacts , Biomarkers , Female , Humans
14.
Nat Biotechnol ; 40(12): 1823-1833, 2022 12.
Article En | MEDLINE | ID: mdl-35788566

Systematically identifying synergistic combinations of targeted agents and immunotherapies for cancer treatments remains difficult. In this study, we integrated high-throughput and high-content techniques-an implantable microdevice to administer multiple drugs into different sites in tumors at nanodoses and multiplexed imaging of tumor microenvironmental states-to investigate the tumor cell and immunological response signatures to different treatment regimens. Using a mouse model of breast cancer, we identified effective combinations from among numerous agents within days. In vivo studies in three immunocompetent mammary carcinoma models demonstrated that the predicted combinations synergistically increased therapeutic efficacy. We identified at least five promising treatment strategies, of which the panobinostat, venetoclax and anti-CD40 triple therapy was the most effective in inducing complete tumor remission across models. Successful drug combinations increased spatial association of cancer stem cells with dendritic cells during immunogenic cell death, suggesting this as an important mechanism of action in long-term breast cancer control.


Antineoplastic Agents , Neoplasms , Humans , Immunotherapy , Panobinostat , Drug Delivery Systems , Cell Line, Tumor
15.
Nat Commun ; 13(1): 4261, 2022 07 23.
Article En | MEDLINE | ID: mdl-35871223

Immune checkpoint inhibitors (ICIs) targeting PD-L1 and PD-1 have improved survival in a subset of patients with advanced non-small cell lung cancer (NSCLC). However, only a minority of NSCLC patients respond to ICIs, highlighting the need for superior immunotherapy. Herein, we report on a nanoparticle-based immunotherapy termed ARAC (Antigen Release Agent and Checkpoint Inhibitor) designed to enhance the efficacy of PD-L1 inhibitor. ARAC is a nanoparticle co-delivering PLK1 inhibitor (volasertib) and PD-L1 antibody. PLK1 is a key mitotic kinase that is overexpressed in various cancers including NSCLC and drives cancer growth. Inhibition of PLK1 selectively kills cancer cells and upregulates PD-L1 expression in surviving cancer cells thereby providing opportunity for ARAC targeted delivery in a feedforward manner. ARAC reduces effective doses of volasertib and PD-L1 antibody by 5-fold in a metastatic lung tumor model (LLC-JSP) and the effect is mainly mediated by CD8+ T cells. ARAC also shows efficacy in another lung tumor model (KLN-205), which does not respond to CTLA-4 and PD-1 inhibitor combination. This study highlights a rational combination strategy to augment existing therapies by utilizing our nanoparticle platform that can load multiple cargo types at once.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Nanoparticles , B7-H1 Antigen , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Humans , Immunotherapy , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Programmed Cell Death 1 Receptor
16.
Commun Biol ; 5(1): 438, 2022 05 11.
Article En | MEDLINE | ID: mdl-35545666

Multiplex imaging technologies are increasingly used for single-cell phenotyping and spatial characterization of tissues; however, transparent methods are needed for comparing the performance of platforms, protocols and analytical pipelines. We developed a python software, mplexable, for reproducible image processing and utilize Jupyter notebooks to share our optimization of signal removal, antibody specificity, background correction and batch normalization of the multiplex imaging with a focus on cyclic immunofluorescence (CyCIF). Our work both improves the CyCIF methodology and provides a framework for multiplexed image analytics that can be easily shared and reproduced.


Diagnostic Imaging , Software , Fluorescent Antibody Technique , Image Processing, Computer-Assisted/methods , Staining and Labeling
17.
Cell Rep Med ; 3(2): 100525, 2022 02 15.
Article En | MEDLINE | ID: mdl-35243422

Mechanisms of therapeutic resistance and vulnerability evolve in metastatic cancers as tumor cells and extrinsic microenvironmental influences change during treatment. To support the development of methods for identifying these mechanisms in individual people, here we present an omic and multidimensional spatial (OMS) atlas generated from four serial biopsies of an individual with metastatic breast cancer during 3.5 years of therapy. This resource links detailed, longitudinal clinical metadata that includes treatment times and doses, anatomic imaging, and blood-based response measurements to clinical and exploratory analyses, which includes comprehensive DNA, RNA, and protein profiles; images of multiplexed immunostaining; and 2- and 3-dimensional scanning electron micrographs. These data report aspects of heterogeneity and evolution of the cancer genome, signaling pathways, immune microenvironment, cellular composition and organization, and ultrastructure. We present illustrative examples of how integrative analyses of these data reveal potential mechanisms of response and resistance and suggest novel therapeutic vulnerabilities.


Breast Neoplasms , Biopsy , Breast Neoplasms/genetics , Female , Humans , Tumor Microenvironment/genetics
18.
Small ; 18(11): e2107550, 2022 03.
Article En | MEDLINE | ID: mdl-35083840

The first-line treatment of advanced and metastatic human epidermal growth factor receptor type 2 (HER2+) breast cancer requires two HER2-targeting antibodies (trastuzumab and pertuzumab) and a taxane (docetaxel or paclitaxel). The three-drug regimen costs over $320,000 per treatment course, requires a 4 h infusion time, and has many adverse side effects, while achieving only 18 months of progression-free survival. To replace this regimen, reduce infusion time, and enhance efficacy, a single therapeutic is developed based on trastuzumab-conjugated nanoparticles for co-delivering docetaxel and siRNA against HER2 (siHER2). The optimal nanoconstruct has a hydrodynamic size of 100 nm and specifically treats HER2+ breast cancer cells over organ-derived normal cells. In a drug-resistant orthotopic HER2+ HCC1954 tumor mouse model, the nanoconstruct inhibits tumor growth more effectively than the docetaxel and trastuzumab combination. When coupled with microbubble-assisted focused ultrasound that transiently disrupts the blood brain barrier, the nanoconstruct inhibits the growth of trastuzumab-resistant HER2+ BT474 tumors residing in the brains of mice. The nanoconstruct has a favorable safety profile in cells and in mice. Combination therapies have become the cornerstone of cancer treatment and this versatile nanoparticle platform can co-deliver multiple therapeutic types to ensure that they reach the target cells at the same time to realize their synergy.


Brain Neoplasms , Breast Neoplasms , Nanoparticles , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Brain Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , Humans , Mice , RNA, Small Interfering , Receptor, ErbB-2/genetics , Taxoids/pharmacology , Taxoids/therapeutic use , Trastuzumab/adverse effects , Trastuzumab/therapeutic use
19.
Sci Rep ; 11(1): 23844, 2021 12 13.
Article En | MEDLINE | ID: mdl-34903759

A number of highly multiplexed immunostaining and imaging methods have advanced spatial proteomics of cancer for improved treatment strategies. While a variety of methods have been developed, the most widely used methods are limited by harmful signal removal techniques, difficulties with reagent production and antigen sensitivity. Multiplexed immunostaining employing oligonucleotide (oligos)-barcoded antibodies is an alternative approach that is growing in popularity. However, challenges remain in consistent conjugation of oligos to antibodies with maintained antigenicity as well as non-destructive, robust and cost-effective signal removal methods. Herein, a variety of oligo conjugation and signal removal methods were evaluated in the development of a robust oligo conjugated antibody cyclic immunofluorescence (Ab-oligo cyCIF) methodology. Both non- and site-specific conjugation strategies were assessed to label antibodies, where site-specific conjugation resulted in higher retained binding affinity and antigen-specific staining. A variety of fluorescence signal removal methods were also evaluated, where incorporation of a photocleavable link (PCL) resulted in full fluorescence signal removal with minimal tissue disruption. In summary, this work resulted in an optimized Ab-oligo cyCIF platform capable of generating high dimensional images to characterize the spatial proteomics of the hallmarks of cancer.


Fluorescent Antibody Technique/methods , Neoplasms, Experimental/diagnostic imaging , Animals , Antibodies/chemistry , Fluorescent Dyes/chemistry , Humans , MCF-7 Cells , Mice , Mice, Nude , Neoplasms, Experimental/metabolism , Oligonucleotides/chemistry
20.
NPJ Precis Oncol ; 5(1): 92, 2021 Oct 19.
Article En | MEDLINE | ID: mdl-34667258

In a pilot study, we evaluated the feasibility of real-time deep analysis of serial tumor samples from triple negative breast cancer patients to identify mechanisms of resistance and treatment opportunities as they emerge under therapeutic stress engendered by poly-ADP-ribose polymerase (PARP) inhibitors (PARPi). In a BRCA-mutant basal breast cancer exceptional long-term survivor, a striking tumor destruction was accompanied by a marked infiltration of immune cells containing CD8 effector cells, consistent with pre-clinical evidence for association between STING mediated immune activation and benefit from PARPi and immunotherapy. Tumor cells in the exceptional responder underwent extensive protein network rewiring in response to PARP inhibition. In contrast, there were minimal changes in the ecosystem of a luminal androgen receptor rapid progressor, likely due to indifference to the effects of PARP inhibition. Together, identification of PARPi-induced emergent changes could be used to select patient specific combination therapies, based on tumor and immune state changes.

...