Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Cent Sci ; 8(10): 1435-1446, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36313164

RESUMEN

Immune stimulating agents like Toll-like receptor 7 (TLR7) agonists induce potent antitumor immunity but are limited in their therapeutic window due to off-target immune activation. Here, we developed a polymeric delivery platform that binds excess unpaired cysteines on tumor cell surfaces and debris to adjuvant tumor neoantigens as an in situ vaccine. The metabolic and enzymatic dysregulation in the tumor microenvironment produces these exofacial free thiols, which can undergo efficient disulfide exchange with thiol-reactive pyridyl disulfide moieties upon intratumoral injection. These functional monomers are incorporated into a copolymer with pendant mannose groups and TLR7 agonists to target both antigen and adjuvant to antigen presenting cells. When tethered in the tumor, the polymeric glyco-adjuvant induces a robust antitumor response and prolongs survival of tumor-bearing mice, including in checkpoint-resistant B16F10 melanoma. The construct additionally reduces systemic toxicity associated with clinically relevant small molecule TLR7 agonists.

2.
Nat Biomed Eng ; 6(7): 819-829, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35534574

RESUMEN

Immune-checkpoint inhibitors have shown modest efficacy against immunologically 'cold' tumours. Interleukin-12 (IL-12)-a cytokine that promotes the recruitment of immune cells into tumours as well as immune cell activation, also in cold tumours-can cause severe immune-related adverse events in patients. Here, by exploiting the preferential overexpression of proteases in tumours, we show that fusing a domain of the IL-12 receptor to IL-12 via a linker cleavable by tumour-associated proteases largely restricts the pro-inflammatory effects of IL-12 to tumour sites. In mouse models of subcutaneous adenocarcinoma and orthotopic melanoma, masked IL-12 delivered intravenously did not cause systemic IL-12 signalling and eliminated systemic immune-related adverse events, led to potent therapeutic effects via the remodelling of the immune-suppressive microenvironment, and rendered cold tumours responsive to immune-checkpoint inhibition. We also show that masked IL-12 is activated in tumour lysates from patients. Protease-sensitive masking of potent yet toxic cytokines may facilitate their clinical translation.


Asunto(s)
Interleucina-12 , Melanoma , Animales , Citocinas , Inmunoterapia , Interleucina-12/farmacología , Ratones , Péptido Hidrolasas , Microambiente Tumoral
3.
Biomaterials ; 278: 121159, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34634664

RESUMEN

The SARS-CoV-2 virus has caused an unprecedented global crisis, and curtailing its spread requires an effective vaccine which elicits a diverse and robust immune response. We have previously shown that vaccines made of a polymeric glyco-adjuvant conjugated to an antigen were effective in triggering such a response in other disease models and hypothesized that the technology could be adapted to create an effective vaccine against SARS-CoV-2. The core of the vaccine platform is the copolymer p(Man-TLR7), composed of monomers with pendant mannose or a toll-like receptor 7 (TLR7) agonist. Thus, p(Man-TLR7) is designed to target relevant antigen-presenting cells (APCs) via mannose-binding receptors and then activate TLR7 upon endocytosis. The p(Man-TLR7) construct is amenable to conjugation to protein antigens such as the Spike protein of SARS-CoV-2, yielding Spike-p(Man-TLR7). Here, we demonstrate Spike-p(Man-TLR7) vaccination elicits robust antigen-specific cellular and humoral responses in mice. In adult and elderly wild-type mice, vaccination with Spike-p(Man-TLR7) generates high and long-lasting titers of anti-Spike IgGs, with neutralizing titers exceeding levels in convalescent human serum. Interestingly, adsorbing Spike-p(Man-TLR7) to the depot-forming adjuvant alum amplified the broadly neutralizing humoral responses to levels matching those in mice vaccinated with formulations based off of clinically-approved adjuvants. Additionally, we observed an increase in germinal center B cells, antigen-specific antibody secreting cells, activated T follicular helper cells, and polyfunctional Th1-cytokine producing CD4+ and CD8+ T cells. We conclude that Spike-p(Man-TLR7) is an attractive, next-generation subunit vaccine candidate, capable of inducing durable and robust antibody and T cell responses.


Asunto(s)
COVID-19 , Inmunidad Humoral , Adyuvantes Inmunológicos , Anciano , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Linfocitos T CD8-positivos , Vacunas contra la COVID-19 , Humanos , Inmunidad Celular , Ratones , SARS-CoV-2
4.
ACS Cent Sci ; 7(8): 1368-1380, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34466656

RESUMEN

The COVID-19 pandemic underscores the need for rapid, safe, and effective vaccines. In contrast to some traditional vaccines, nanoparticle-based subunit vaccines are particularly efficient in trafficking antigens to lymph nodes, where they induce potent immune cell activation. Here, we developed a strategy to decorate the surface of oxidation-sensitive polymersomes with multiple copies of the SARS-CoV-2 spike protein receptor-binding domain (RBD) to mimic the physical form of a virus particle. We evaluated the vaccination efficacy of these surface-decorated polymersomes (RBDsurf) in mice compared to RBD-encapsulated polymersomes (RBDencap) and unformulated RBD (RBDfree), using monophosphoryl-lipid-A-encapsulated polymersomes (MPLA PS) as an adjuvant. While all three groups produced high titers of RBD-specific IgG, only RBDsurf elicited a neutralizing antibody response to SARS-CoV-2 comparable to that of human convalescent plasma. Moreover, RBDsurf was the only group to significantly increase the proportion of RBD-specific germinal center B cells in the vaccination-site draining lymph nodes. Both RBDsurf and RBDencap drove similarly robust CD4+ and CD8+ T cell responses that produced multiple Th1-type cytokines. We conclude that a multivalent surface display of spike RBD on polymersomes promotes a potent neutralizing antibody response to SARS-CoV-2, while both antigen formulations promote robust T cell immunity.

5.
bioRxiv ; 2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33851166

RESUMEN

A diverse portfolio of SARS-CoV-2 vaccine candidates is needed to combat the evolving COVID-19 pandemic. Here, we developed a subunit nanovaccine by conjugating SARS-CoV-2 Spike protein receptor binding domain (RBD) to the surface of oxidation-sensitive polymersomes. We evaluated the humoral and cellular responses of mice immunized with these surface-decorated polymersomes (RBDsurf) compared to RBD-encapsulated polymersomes (RBDencap) and unformulated RBD (RBDfree), using monophosphoryl lipid A-encapsulated polymersomes (MPLA PS) as an adjuvant. While all three groups produced high titers of RBD-specific IgG, only RBDsurf elicited a neutralizing antibody response to SARS-CoV-2 comparable to that of human convalescent plasma. Moreover, RBDsurf was the only group to significantly increase the proportion of RBD-specific germinal center B cells in the vaccination-site draining lymph nodes. Both RBDsurf and RBDencap drove similarly robust CD4+ and CD8+ T cell responses that produced multiple Th1-type cytokines. We conclude that multivalent surface display of Spike RBD on polymersomes promotes a potent neutralizing antibody response to SARS-CoV-2, while both antigen formulations promote robust T cell immunity.

6.
Nat Biomed Eng ; 4(5): 531-543, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32284554

RESUMEN

Checkpoint-inhibitor (CPI) immunotherapy has achieved remarkable clinical success, yet its efficacy in 'immunologically cold' tumours has been modest. Interleukin-12 (IL-12) is a powerful cytokine that activates the innate and adaptive arms of the immune system; however, the administration of IL-12 has been associated with immune-related adverse events. Here we show that, after intravenous administration of a collagen-binding domain fused to IL-12 (CBD-IL-12) in mice bearing aggressive mouse tumours, CBD-IL-12 accumulates in the tumour stroma due to exposed collagen in the disordered tumour vasculature. In comparison with the administration of unmodified IL-12, CBD-IL-12 induced sustained intratumoural levels of interferon-γ, substantially reduced its systemic levels as well as organ damage and provided superior anticancer efficacy, eliciting complete regression of CPI-unresponsive breast tumours. Furthermore, CBD-IL-12 potently synergized with CPI to eradicate large established melanomas, induced antigen-specific immunological memory and controlled tumour growth in a genetically engineered mouse model of melanoma. CBD-IL-12 may potentiate CPI immunotherapy for immunologically cold tumours.


Asunto(s)
Colágeno/metabolismo , Inflamación/patología , Interleucina-12/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Inmunidad Adaptativa/efectos de los fármacos , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Epítopos/inmunología , Femenino , Inmunidad Innata/efectos de los fármacos , Interleucina-12/farmacología , Melanoma/tratamiento farmacológico , Melanoma/patología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Metástasis de la Neoplasia , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Inducción de Remisión , Carga Tumoral/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos
7.
Artículo en Inglés | MEDLINE | ID: mdl-32117911

RESUMEN

Therapeutic cancer vaccines constitute a valuable tool to educate the immune system to fight tumors and prevent cancer relapse. Nevertheless, the number of cancer vaccines in the clinic remains very limited to date, highlighting the need for further technology development. Recently, cancer vaccines have been improved by the use of materials, which can strongly enhance their intrinsic properties and biodistribution profile. Moreover, vaccine efficacy and safety can be substantially modulated through selection of the site at which they are delivered, which fosters the engineering of materials capable of targeting cancer vaccines to specific relevant sites, such as within the tumor or within lymphoid organs, to further optimize their immunotherapeutic effects. In this review, we aim to give the reader an overview of principles and current strategies to engineer therapeutic cancer vaccines, with a particular focus on the use of site-specific targeting materials. We will first recall the goal of therapeutic cancer vaccination and the type of immune responses sought upon vaccination, before detailing key components of cancer vaccines. We will then present how materials can be engineered to enhance the vaccine's pharmacokinetic and pharmacodynamic properties. Finally, we will discuss the rationale for site-specific targeting of cancer vaccines and provide examples of current targeting technologies.

8.
Sci Transl Med ; 11(487)2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30971453

RESUMEN

Cancer immunotherapy with immune checkpoint inhibitors (CPIs) and interleukin-2 (IL-2) has demonstrated clinical efficacy but is frequently accompanied with severe adverse events caused by excessive and systemic immune system activation. Here, we addressed this need by targeting both the CPI antibodies anti-cytotoxic T lymphocyte antigen 4 antibody (αCTLA4) + anti-programmed death ligand 1 antibody (αPD-L1) and the cytokine IL-2 to tumors via conjugation (for the antibodies) or recombinant fusion (for the cytokine) to a collagen-binding domain (CBD) derived from the blood protein von Willebrand factor (VWF) A3 domain, harnessing the exposure of tumor stroma collagen to blood components due to the leakiness of the tumor vasculature. We show that intravenously administered CBD protein accumulated mainly in tumors. CBD conjugation or fusion decreases the systemic toxicity of both αCTLA4 + αPD-L1 combination therapy and IL-2, for example, eliminating hepatotoxicity with the CPI molecules and ameliorating pulmonary edema with IL-2. Both CBD-CPI and CBD-IL-2 suppressed tumor growth compared to their unmodified forms in multiple murine cancer models, and both CBD-CPI and CBD-IL-2 increased tumor-infiltrating CD8+ T cells. In an orthotopic breast cancer model, combination treatment with CPI and IL-2 eradicated tumors in 9 of 13 animals with the CBD-modified drugs, whereas it did so in only 1 of 13 animals with the unmodified drugs. Thus, the A3 domain of VWF can be used to improve safety and efficacy of systemically administered tumor drugs with high translational promise.


Asunto(s)
Anticuerpos Antineoplásicos/inmunología , Colágeno/metabolismo , Citocinas/inmunología , Inmunoterapia , Melanoma Experimental/inmunología , Melanoma Experimental/terapia , Animales , Linfocitos T CD8-positivos/inmunología , Proliferación Celular , Citotoxicidad Inmunológica , Modelos Animales de Enfermedad , Humanos , Inmunidad , Inyecciones Intravenosas , Interleucina-2/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Dominios Proteicos , Resultado del Tratamiento
9.
Proc Natl Acad Sci U S A ; 114(5): 944-949, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28096333

RESUMEN

Antibodies are a highly successful class of biological drugs, with over 50 such molecules approved for therapeutic use and hundreds more currently in clinical development. Improvements in technology for the discovery and optimization of high-potency antibodies have greatly increased the chances for finding binding molecules with desired biological properties; however, achieving drug-like properties at the same time is an additional requirement that is receiving increased attention. In this work, we attempt to quantify the historical limits of acceptability for multiple biophysical metrics of "developability." Amino acid sequences from 137 antibodies in advanced clinical stages, including 48 approved for therapeutic use, were collected and used to construct isotype-matched IgG1 antibodies, which were then expressed in mammalian cells. The resulting material for each source antibody was evaluated in a dozen biophysical property assays. The distributions of the observed metrics are used to empirically define boundaries of drug-like behavior that can represent practical guidelines for future antibody drug candidates.


Asunto(s)
Anticuerpos Monoclonales , Descubrimiento de Drogas/métodos , Secuencia de Aminoácidos , Anticuerpos Monoclonales/química , Fenómenos Biofísicos , Aprobación de Drogas , Células HEK293 , Humanos , Inmunoglobulina G/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...