Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 34(10): 2094-2106.e6, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38677280

RESUMEN

Xyloglucan is believed to play a significant role in cell wall mechanics of dicot plants. Surprisingly, Arabidopsis plants defective in xyloglucan biosynthesis exhibit nearly normal growth and development. We investigated a mutant line, cslc-Δ5, lacking activity in all five Arabidopsis cellulose synthase like-C (CSLC) genes responsible for xyloglucan backbone biosynthesis. We observed that this xyloglucan-deficient line exhibited reduced cellulose crystallinity and increased pectin levels, suggesting the existence of feedback mechanisms that regulate wall composition to compensate for the absence of xyloglucan. These alterations in cell wall composition in the xyloglucan-absent plants were further linked to a decrease in cell wall elastic modulus and rupture stress, as observed through atomic force microscopy (AFM) and extensometer-based techniques. This raised questions about how plants with such modified cell wall properties can maintain normal growth. Our investigation revealed two key factors contributing to this phenomenon. First, measurements of turgor pressure, a primary driver of plant growth, revealed that cslc-Δ5 plants have reduced turgor, preventing the compromised walls from bursting while still allowing growth to occur. Second, we discovered the conservation of elastic asymmetry (ratio of axial to transverse wall elasticity) in the mutant, suggesting an additional mechanism contributing to the maintenance of normal growth. This novel feedback mechanism between cell wall composition and mechanical properties, coupled with turgor pressure regulation, plays a central role in the control of plant growth and is critical for seedling establishment in a mechanically challenging environment by affecting shoot emergence and root penetration.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Pared Celular , Glucanos , Plantones , Xilanos , Pared Celular/metabolismo , Glucanos/metabolismo , Xilanos/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Plantones/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Glucosiltransferasas/metabolismo , Glucosiltransferasas/genética , Celulosa/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(39): e2304513120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37725643

RESUMEN

Nitrate supply is fundamental to support shoot growth and crop performance, but the associated increase in stem height exacerbates the risks of lodging and yield losses. Despite their significance for agriculture, the mechanisms involved in the promotion of stem growth by nitrate remain poorly understood. Here, we show that the elongation of the hypocotyl of Arabidopsis thaliana, used as a model, responds rapidly and persistently to upshifts in nitrate concentration, rather than to the nitrate level itself. The response occurred even in shoots dissected from their roots and required NITRATE TRANSPORTER 1.1 (NRT1.1) in the phosphorylated state (but not NRT1.1 nitrate transport capacity) and NIN-LIKE PROTEIN 7 (NLP7). Nitrate increased PHYTOCHROME INTERACTING FACTOR 4 (PIF4) nuclear abundance by posttranscriptional mechanisms that depended on NRT1.1 and phytochrome B. In response to nitrate, PIF4 enhanced the expression of numerous SMALL AUXIN-UP RNA (SAUR) genes in the hypocotyl. The growth response to nitrate required PIF4, positive and negative regulators of its activity, including AUXIN RESPONSE FACTORs, and SAURs. PIF4 integrates cues from the soil (nitrate) and aerial (shade) environments adjusting plant stature to facilitate access to light.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Nitratos/farmacología , Fitocromo B , Arabidopsis/genética , Ácidos Indolacéticos , Transportadores de Nitrato , ARN , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética
3.
PLoS Genet ; 18(9): e1010375, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36121899

RESUMEN

In plants, regulated cell expansion determines organ size and shape. Several members of the family of redundantly acting Small Auxin Up RNA (SAUR) proteins can stimulate plasma membrane (PM) H+-ATPase proton pumping activity by inhibiting PM-associated PP2C.D phosphatases, thereby increasing the PM electrochemical potential, acidifying the apoplast, and stimulating cell expansion. Similarly, Arabidopsis thaliana SAUR63 was able to increase growth of various organs, antagonize PP2C.D5 phosphatase, and increase H+-ATPase activity. Using a gain-of-function approach to bypass genetic redundancy, we dissected structural requirements for SAUR63 growth-promoting activity. The divergent N-terminal domain of SAUR63 has a predicted basic amphipathic α-helix and was able to drive partial PM association. Deletion of the N-terminal domain decreased PM association of a SAUR63 fusion protein, as well as decreasing protein level and eliminating growth-promoting activity. Conversely, forced PM association restored ability to promote H+-ATPase activity and cell expansion, indicating that SAUR63 is active when PM-associated. Lipid binding assays and perturbations of PM lipid composition indicate that the N-terminal domain can interact with PM anionic lipids. Mutations in the conserved SAUR domain also reduced PM association in root cells. Thus, both the N-terminal domain and the SAUR domain may cooperatively mediate the SAUR63 PM association required to promote growth.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Lípidos , Monoéster Fosfórico Hidrolasas/genética , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Protones , ARN/metabolismo
4.
Sci Adv ; 8(2): eabj1570, 2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35020423

RESUMEN

Seedling emergence is critical for food security. It requires rapid hypocotyl elongation and apical hook formation, both of which are mediated by regulated cell expansion. How these events are coordinated in etiolated seedlings is unclear. Here, we show that biphasic control of cell expansion by the phytohormone auxin underlies this process. Shortly after germination, high auxin levels restrain elongation. This provides a temporal window for apical hook formation, involving a gravity-induced auxin maximum on the eventual concave side of the hook. This auxin maximum induces PP2C.D1 expression, leading to asymmetrical H+-ATPase activity across the hypocotyl that contributes to the differential cell elongation underlying hook development. Subsequently, auxin concentrations decline acropetally and switch from restraining to promoting elongation, thereby driving hypocotyl elongation. Our findings demonstrate how differential auxin concentrations throughout the hypocotyl coordinate etiolated development, leading to successful soil emergence.

5.
New Phytol ; 233(4): 1732-1749, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34859454

RESUMEN

Plants employ an array of intricate and hierarchical signaling cascades to perceive and transduce informational cues to synchronize and tailor adaptive responses. Systemic stress response (SSR) is a recognized complex signaling and response network quintessential to plant's local and distal responses to environmental triggers; however, the identity of the initiating signals has remained fragmented. Here, we show that both biotic (aphids and viral pathogens) and abiotic (high light and wounding) stresses induce accumulation of the plastidial-retrograde-signaling metabolite methylerythritol cyclodiphosphate (MEcPP), leading to reduction of the phytohormone auxin and the subsequent decreased expression of the phosphatase PP2C.D1. This enables phosphorylation of mitogen-activated protein kinases 3/6 and the consequential induction of the downstream events ultimately, resulting in biosynthesis of the two SSR priming metabolites pipecolic acid and N-hydroxy-pipecolic acid. This work identifies plastids as a major initiation site, and the plastidial retrograde signal MEcPP as an initiator of a multicomponent signaling cascade potentiating the biosynthesis of SSR activators, in response to biotic and abiotic triggers.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Plastidios/metabolismo
6.
Plant Physiol ; 188(4): 2228-2240, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-34894269

RESUMEN

Plasma membrane (PM) H+-ATPase in guard cells is activated by phosphorylation of the penultimate residue, threonine (Thr), in response to blue and red light, promoting stomatal opening. Previous in vitro biochemical investigation suggested that Mg2+- and Mn2+-dependent membrane-localized type 2C protein phosphatase (PP2C)-like activity mediates the dephosphorylation of PM H+-ATPase in guard cells. PP2C clade D (PP2C.D) was later demonstrated to be involved in PM H+-ATPase dephosphorylation during auxin-induced cell expansion in Arabidopsis (Arabidopsis thaliana). However, it is unclear whether PP2C.D phosphatases are involved in PM H+-ATPase dephosphorylation in guard cells. Transient expression experiments using Arabidopsis mesophyll cell protoplasts revealed that all PP2C.D isoforms dephosphorylate the endogenous PM H+-ATPase. We further analyzed PP2C.D6/8/9, which display higher expression levels than other isoforms in guard cells, observing that pp2c.d6, pp2c.d8, and pp2c.d9 single mutants showed similar light-induced stomatal opening and phosphorylation status of PM H+-ATPase in guard cells as Col-0. In contrast, the pp2c.d6/9 double mutant displayed wider stomatal apertures and greater PM H+-ATPase phosphorylation in response to blue light, but delayed dephosphorylation of PM H+-ATPase in guard cells; the pp2c.d6/8/9 triple mutant showed similar phenotypes to those of the pp2c.d6/9 double mutant. Taken together, these results indicate that PP2C.D6 and PP2C.D9 redundantly mediate PM H+-ATPase dephosphorylation in guard cells. Curiously, unlike auxin-induced cell expansion in seedlings, auxin had no effect on the phosphorylation status of PM H+-ATPase in guard cells.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Luz , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Proteína Fosfatasa 2C/metabolismo , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo
7.
Nature ; 599(7884): 273-277, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34707283

RESUMEN

Growth regulation tailors development in plants to their environment. A prominent example of this is the response to gravity, in which shoots bend up and roots bend down1. This paradox is based on opposite effects of the phytohormone auxin, which promotes cell expansion in shoots while inhibiting it in roots via a yet unknown cellular mechanism2. Here, by combining microfluidics, live imaging, genetic engineering and phosphoproteomics in Arabidopsis thaliana, we advance understanding of how auxin inhibits root growth. We show that auxin activates two distinct, antagonistically acting signalling pathways that converge on rapid regulation of apoplastic pH, a causative determinant of growth. Cell surface-based TRANSMEMBRANE KINASE1 (TMK1) interacts with and mediates phosphorylation and activation of plasma membrane H+-ATPases for apoplast acidification, while intracellular canonical auxin signalling promotes net cellular H+ influx, causing apoplast alkalinization. Simultaneous activation of these two counteracting mechanisms poises roots for rapid, fine-tuned growth modulation in navigating complex soil environments.


Asunto(s)
Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , ATPasas de Translocación de Protón/metabolismo , Protones , Transducción de Señal , Álcalis , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Activación Enzimática , Proteínas F-Box/metabolismo , Concentración de Iones de Hidrógeno , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo
8.
Nature ; 599(7884): 278-282, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34707287

RESUMEN

The phytohormone auxin controls many processes in plants, at least in part through its regulation of cell expansion1. The acid growth hypothesis has been proposed to explain auxin-stimulated cell expansion for five decades, but the mechanism that underlies auxin-induced cell-wall acidification is poorly characterized. Auxin induces the phosphorylation and activation of the plasma membrane H+-ATPase that pumps protons into the apoplast2, yet how auxin activates its phosphorylation remains unclear. Here we show that the transmembrane kinase (TMK) auxin-signalling proteins interact with plasma membrane H+-ATPases, inducing their phosphorylation, and thereby promoting cell-wall acidification and hypocotyl cell elongation in Arabidopsis. Auxin induced interactions between TMKs and H+-ATPases in the plasma membrane within seconds, as well as TMK-dependent phosphorylation of the penultimate threonine residue on the H+-ATPases. Our genetic, biochemical and molecular evidence demonstrates that TMKs directly phosphorylate plasma membrane H+-ATPase and are required for auxin-induced H+-ATPase activation, apoplastic acidification and cell expansion. Thus, our findings reveal a crucial connection between auxin and plasma membrane H+-ATPase activation in regulating apoplastic pH changes and cell expansion through TMK-based cell surface auxin signalling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Pared Celular/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Ácidos , Arabidopsis/citología , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/enzimología , Activación Enzimática , Concentración de Iones de Hidrógeno , Hipocótilo/enzimología , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Proteínas de la Membrana/genética , Fosforilación , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/metabolismo , Protones , Treonina/metabolismo
9.
Plant Physiol ; 185(1): 256-273, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33631805

RESUMEN

Activation of plasma membrane (PM) H+-ATPase activity is crucial in guard cells to promote light-stimulated stomatal opening, and in growing organs to promote cell expansion. In growing organs, SMALL AUXIN UP RNA (SAUR) proteins inhibit the PP2C.D2, PP2C.D5, and PP2C.D6 (PP2C.D2/5/6) phosphatases, thereby preventing dephosphorylation of the penultimate phosphothreonine of PM H+-ATPases and trapping them in the activated state to promote cell expansion. To elucidate whether SAUR-PP2C.D regulatory modules also affect reversible cell expansion, we examined stomatal apertures and conductances of Arabidopsis thaliana plants with altered SAUR or PP2C.D activity. Here, we report that the pp2c.d2/5/6 triple knockout mutant plants and plant lines overexpressing SAUR fusion proteins exhibit enhanced stomatal apertures and conductances. Reciprocally, saur56 saur60 double mutants, lacking two SAUR genes normally expressed in guard cells, displayed reduced apertures and conductances, as did plants overexpressing PP2C.D5. Although altered PM H+-ATPase activity contributes to these stomatal phenotypes, voltage clamp analysis showed significant changes also in K+ channel gating in lines with altered SAUR and PP2C.D function. Together, our findings demonstrate that SAUR and PP2C.D proteins act antagonistically to facilitate stomatal movements through a concerted targeting of both ATP-dependent H+ pumping and channel-mediated K+ transport.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Ácidos Indolacéticos/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Estomas de Plantas/metabolismo , ATPasas de Translocación de Protón/metabolismo , Ecotipo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Reguladores del Crecimiento de las Plantas/metabolismo
10.
Annu Rev Plant Biol ; 71: 379-402, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32131604

RESUMEN

The promotive effect of auxin on shoot cell expansion provided the bioassay used to isolate this central plant hormone nearly a century ago. While the mechanisms underlying auxin perception and signaling to regulate transcription have largely been elucidated, how auxin controls cell expansion is only now attaining molecular-level definition. The good news is that the decades-old acid growth theory invoking plasma membrane H+-ATPase activation is still useful. The better news is that a mechanistic framework has emerged, wherein Small Auxin Up RNA (SAUR) proteins regulate protein phosphatases to control H+-ATPase activity. In this review, we focus on rapid auxin effects, their relationship to H+-ATPase activation and other transporters, and dependence on TIR1/AFB signaling. We also discuss how some observations, such as near-instantaneous effects on ion transport and root growth, do not fit into a single, comprehensive explanation of how auxin controls cell expansion, and where more research is warranted.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Reguladores del Crecimiento de las Plantas
11.
Plant Physiol ; 181(1): 353-366, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31311832

RESUMEN

The phytohormone auxin promotes the growth of plant shoots by stimulating cell expansion via plasma membrane (PM) H+-ATPase activation, which facilitates cell wall loosening and solute uptake. Mechanistic insight was recently obtained by demonstrating that auxin-induced SMALL AUXIN UP RNA (SAUR) proteins inhibit D-CLADE TYPE 2C PROTEIN PHOSPHATASE (PP2C.D) activity, thereby trapping PM H+-ATPases in the phosphorylated, activated state, but how SAURs bind PP2C.D proteins and inhibit their activity is unknown. Here, we identified a highly conserved motif near the C-terminal region of the PP2C.D catalytic domain that is required for SAUR binding in Arabidopsis (Arabidopsis thaliana). Missense mutations in this motif abolished SAUR binding but had no apparent effect on catalytic activity. Consequently, mutant PP2C.D proteins that could not bind SAURs exhibited constitutive activity, as they were immune to SAUR inhibition. In planta expression of SAUR-immune pp2c.d2 or pp2c.d5 derivatives conferred severe cell expansion defects and corresponding constitutively low levels of PM H+-ATPase phosphorylation. These growth defects were not alleviated by either auxin treatment or 35S:StrepII-SAUR19 coexpression. In contrast, a PM H+-ATPase gain-of-function mutation that results in a constitutively active H+ pump partially suppressed SAUR-immune pp2c.d5 phenotypes, demonstrating that impaired PM H+-ATPase function is largely responsible for the reduced growth of the SAUR-immune pp2c.d5 mutant. Together, these findings provide crucial genetic support for SAUR-PP2C.D regulation of cell expansion via modulation of PM H+-ATPase activity. Furthermore, SAUR-immune pp2c.d derivatives provide new genetic tools for elucidating SAUR and PP2C.D functions and manipulating plant organ growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fosfoproteínas Fosfatasas/metabolismo , Proteína Fosfatasa 2C/metabolismo , Arabidopsis/enzimología , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Transporte Biológico , Membrana Celular/metabolismo , Ácidos Indolacéticos/metabolismo , Mutación , Fosfoproteínas Fosfatasas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteína Fosfatasa 2C/genética , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , ARN/metabolismo
12.
PLoS Genet ; 15(1): e1007904, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30615605

RESUMEN

Brassinosteroids (BRs) are steroid hormones essential for plant growth and development. The BR signaling pathway has been studied in some detail, however, the functions of the BRASSINOSTEROID-SIGNALING KINASE (BSK) family proteins in the pathway have remained elusive. Through forward genetics, we identified five semi-dominant mutations in the BSK3 gene causing BSK3 loss-of-function and decreased BR responses. We therefore investigated the function of BSK3, a receptor-like cytoplasmic kinase, in BR signaling and plant growth and development. We find that BSK3 is anchored to the plasma membrane via N-myristoylation, which is required for its function in BR signaling. The N-terminal kinase domain is crucial for BSK3 function, and the C-terminal three tandem TPR motifs contribute to BSK3/BSK3 homodimer and BSK3/BSK1 heterodimer formation. Interestingly, the effects of BSK3 on BR responses are dose-dependent, depending on its protein levels. Our genetic studies indicate that kinase dead BSK3K86R protein partially rescues the bsk3-1 mutant phenotypes. BSK3 directly interacts with the BSK family proteins (BSK3 and BSK1), BRI1 receptor kinase, BSU1 phosphatase, and BIN2 kinase. BIN2 phosphorylation of BSK3 enhances BSK3/BSK3 homodimer and BSK3/BSK1 heterodimer formation, BSK3/BRI1 interaction, and BSK3/BSU1 interaction. Furthermore, we find that BSK3 upregulates BSU1 transcript and protein levels to activate BR signaling. BSK3 is broadly expressed and plays an important role in BR-mediated root growth, shoot growth, and organ separation. Together, our findings suggest that BSK3 may function as a scaffold protein to regulate BR signaling. The results of our studies provide new insights into early BR signaling mechanisms.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Brasinoesteroides/metabolismo , Fosfoproteínas Fosfatasas/genética , Proteínas Serina-Treonina Quinasas/genética , Secuencia de Aminoácidos/genética , Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Mutación con Pérdida de Función/genética , Fenotipo , Fosforilación , Plantas Modificadas Genéticamente/genética , Transducción de Señal
13.
PLoS Genet ; 14(6): e1007455, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29897949

RESUMEN

The plant hormone auxin regulates numerous growth and developmental processes throughout the plant life cycle. One major function of auxin in plant growth and development is the regulation of cell expansion. Our previous studies have shown that SMALL AUXIN UP RNA (SAUR) proteins promote auxin-induced cell expansion via an acid growth mechanism. These proteins inhibit the PP2C.D family phosphatases to activate plasma membrane (PM) H+-ATPases and thereby promote cell expansion. However, the functions of individual PP2C.D phosphatases are poorly understood. Here, we investigated PP2C.D-mediated control of cell expansion and other aspects of plant growth and development. The nine PP2C.D family members exhibit distinct subcellular localization patterns. Our genetic findings demonstrate that the three plasma membrane-localized members, PP2C.D2, PP2C.D5, and PP2C.D6, are the major regulators of cell expansion. These phosphatases physically interact with SAUR19 and PM H+-ATPases, and inhibit cell expansion by dephosphorylating the penultimate threonine of PM H+-ATPases. PP2C.D genes are broadly expressed and are crucial for diverse plant growth and developmental processes, including apical hook development, phototropism, and organ growth. GFP-SAUR19 overexpression suppresses the growth defects conferred by PP2C.D5 overexpression, indicating that SAUR proteins antagonize the growth inhibition conferred by the plasma membrane-localized PP2C.D phosphatases. Auxin and high temperature upregulate the expression of some PP2C.D family members, which may provide an additional layer of regulation to prevent plant overgrowth. Our findings provide novel insights into auxin-induced cell expansion, and provide crucial loss-of-function genetic support for SAUR-PP2C.D regulatory modules controlling key aspects of plant growth.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosfoproteínas Fosfatasas/fisiología , Arabidopsis/genética , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Ácidos Indolacéticos/metabolismo , Familia de Multigenes/genética , Fosfoproteínas Fosfatasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , ARN/metabolismo
14.
Plant Physiol ; 173(2): 1453-1462, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27999086

RESUMEN

The plant hormone indole-3-acetic acid (IAA or auxin) mediates the elongation growth of shoot tissues by promoting cell expansion. According to the acid growth theory proposed in the 1970s, auxin activates plasma membrane H+-ATPases (PM H+-ATPases) to facilitate cell expansion by both loosening the cell wall through acidification and promoting solute uptake. Mechanistically, however, this process is poorly understood. Recent findings in Arabidopsis (Arabidopsis thaliana) have demonstrated that auxin-induced SMALL AUXIN UP RNA (SAUR) genes promote elongation growth and play a key role in PM H+-ATPase activation by inhibiting PP2C.D family protein phosphatases. Here, we extend these findings by demonstrating that SAUR proteins also inhibit tomato PP2C.D family phosphatases and that AtSAUR19 overexpression in tomato (Solanum lycopersicum) confers the same suite of phenotypes as previously reported for Arabidopsis. Furthermore, we employ a custom image-based method for measuring hypocotyl segment elongation with high resolution and a method for measuring cell wall mechanical properties, to add mechanistic details to the emerging description of auxin-mediated cell expansion. We find that constitutive expression of GFP-AtSAUR19 bypasses the normal requirement of auxin for elongation growth by increasing the mechanical extensibility of excised hypocotyl segments. In contrast, hypocotyl segments overexpressing a PP2C.D phosphatase are specifically impaired in auxin-mediated elongation. The time courses of auxin-induced SAUR expression and auxin-dependent elongation growth were closely correlated. These findings indicate that induction of SAUR expression is sufficient to elicit auxin-mediated expansion growth by activating PM H+-ATPases to facilitate apoplast acidification and mechanical wall loosening.


Asunto(s)
Proteínas de Arabidopsis/genética , Hipocótilo/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocótilo/genética , Hipocótilo/metabolismo , Solanum lycopersicum/genética , Plantas Modificadas Genéticamente , Proteína Fosfatasa 2C/genética , Proteína Fosfatasa 2C/metabolismo , ATPasas de Translocación de Protón/metabolismo
15.
J Proteome Res ; 15(3): 851-67, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26824330

RESUMEN

Protein turnover is an important aspect of the regulation of cellular processes for organisms when responding to developmental or environmental cues. The measurement of protein turnover in plants, in contrast to that of rapidly growing unicellular organismal cultures, is made more complicated by the high degree of amino acid recycling, resulting in significant transient isotope incorporation distributions that must be dealt with computationally for high throughput analysis to be practical. An algorithm in R, ProteinTurnover, was developed to calculate protein turnover with transient stable isotope incorporation distributions in a high throughput automated manner using high resolution MS and MS/MS proteomic analysis of stable isotopically labeled plant material. ProteinTurnover extracts isotopic distribution information from raw MS data for peptides identified by MS/MS from data sets of either isotopic label dilution or incorporation experiments. Variable isotopic incorporation distributions were modeled using binomial and beta-binomial distributions to deconvolute the natural abundance, newly synthesized/partial-labeled, and fully labeled peptide distributions. Maximum likelihood estimation was performed to calculate the distribution abundance proportion of old and newly synthesized peptides. The half-life or turnover rate of each peptide was calculated from changes in the distribution abundance proportions using nonlinear regression. We applied ProteinTurnover to obtain half-lives of proteins from enriched soluble and membrane fractions from Arabidopsis roots.


Asunto(s)
Marcaje Isotópico , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Espectrometría de Masas en Tándem , Algoritmos , Semivida , Funciones de Verosimilitud , Proteómica/métodos
16.
Curr Opin Plant Biol ; 28: 68-75, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26476298

RESUMEN

In plants and fungi, energetics at the plasma membrane is provided by a large protonmotive force (PMF) generated by the family of P-type ATPases specialized for proton transport (commonly called PM H(+)-ATPases or, in Arabidopsis, AHAs for Arabidopsis H(+)-ATPases). Studies have demonstrated that this 100-kDa protein is essential for plant growth and development. Posttranslational modifications of the H(+)-ATPase play crucial roles in its regulation. Phosphorylation of several Thr and Ser residues within the carboxy terminal regulatory domain composed of ∼100 amino acids change in response to environmental stimuli, endogenous hormones, and nutrient conditions. Recently developed mass spectrometric technologies provide a means to carefully quantify these changes in H(+)-ATPase phosphorylation at the different sites. These chemical modifications can then be genetically tested in planta by complementing the loss-of-function aha mutants with phosphomimetic mutations. Interestingly, recent data suggest that phosphatase-mediated changes in PM H(+)-ATPase phosphorylation are important in mediating auxin-regulated growth. Thus, as with another hormone (abscisic acid), dephosphorylation by phosphatases, rather than kinase mediated phosphorylation, may be an important focal point for regulation during plant signal transduction. Although interactions with other proteins have also been implicated in ATPase regulation, the very hydrophobic nature and high concentration of this polytopic protein presents special challenges in evaluating the biological significance of these interactions. Only by combining biochemical and genetic experiments can we attempt to meet these challenges to understand the essential molecular details by which this protein functions in planta.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , ATPasas de Translocación de Protón/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Fosforilación , ATPasas de Translocación de Protón/metabolismo , Transducción de Señal
17.
Mol Plant ; 8(8): 1153-64, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25983207

RESUMEN

The plant hormone auxin regulates numerous aspects of plant growth and development. Early auxin response genes mediate its genomic effects on plant growth and development. Discovered in 1987, small auxin up RNAs (SAURs) are the largest family of early auxin response genes. SAUR functions have remained elusive, however, presumably due to extensive genetic redundancy. However, recent molecular, genetic, biochemical, and genomic studies have implicated SAURs in the regulation of a wide range of cellular, physiological, and developmental processes. Recently, crucial mechanistic insight into SAUR function was provided by the demonstration that SAURs inhibit PP2C.D phosphatases to activate plasma membrane (PM) H(+)-ATPases and promote cell expansion. In addition to auxin, several other hormones and environmental factors also regulate SAUR gene expression. We propose that SAURs are key effector outputs of hormonal and environmental signals that regulate plant growth and development.


Asunto(s)
Ambiente , Desarrollo de la Planta/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/metabolismo , Transducción de Señal/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Desarrollo de la Planta/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética
18.
Nat Plants ; 1: 15097, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-27250261
19.
Arabidopsis Book ; 12: e0175, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25505853

RESUMEN

Due to their sessile nature, plants depend on flexible regulatory systems that allow them to adequately regulate developmental and physiological processes in context with environmental cues. The ubiquitin proteasome pathway, which targets a great number of proteins for degradation, is cellular tool that provides the necessary flexibility to accomplish this task. Ubiquitin E3 ligases provide the needed specificity to the pathway by selectively binding to particular substrates and facilitating their ubiquitylation. The largest group of E3 ligases known in plants is represented by CULLIN-REALLY INTERESTING NEW GENE (RING) E3 ligases (CRLs). In recent years, a great amount of knowledge has been generated to reveal the critical roles of these enzymes across all aspects of plant life. This review provides an overview of the different classes of CRLs in plants, their specific complex compositions, the variety of biological processes they control, and the regulatory steps that can affect their activities.

20.
PLoS One ; 9(8): e102301, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25144378

RESUMEN

The INDOLE-3-BUTYRIC ACID RESPONSE5 (IBR5) gene encodes a dual specificity phosphatase that regulates plant auxin responses. IBR5 has been predicted to generate two transcripts through alternative splicing, but alternative splicing of IBR5 has not been confirmed experimentally. The previously characterized ibr5-1 null mutant exhibits many auxin related defects such as auxin insensitive primary root growth, defective vascular development, short stature and reduced lateral root development. However, whether all these defects are caused by the lack of phosphatase activity is not clear. Here we describe two new auxin insensitive IBR5 alleles, ibr5-4, a catalytic site mutant, and ibr5-5, a splice site mutant. Characterization of these new mutants indicates that IBR5 is post-transcriptionally regulated to generate two transcripts, AT2G04550.1 and AT2G04550.3, and consequently two IBR5 isoforms, IBR5.1 and IBR5.3. The IBR5.1 isoform exhibits phosphatase catalytic activity that is required for both proper degradation of Aux/IAA proteins and auxin-induced gene expression. These two processes are independently regulated by IBR5.1. Comparison of new mutant alleles with ibr5-1 indicates that all three mutant alleles share many phenotypes. However, each allele also confers distinct defects implicating IBR5 isoform specific functions. Some of these functions are independent of IBR5.1 catalytic activity. Additionally, analysis of these new mutant alleles suggests that IBR5 may link ABP1 and SCF(TIR1/AFBs) auxin signaling pathways.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Fosfatasas de Especificidad Dual/metabolismo , Isoformas de Proteínas/metabolismo , Alelos , Empalme Alternativo/genética , Empalme Alternativo/fisiología , Proteínas de Arabidopsis/genética , Fosfatasas de Especificidad Dual/genética , Isoformas de Proteínas/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...