Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Biol ; 220(8)2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34096975

RESUMEN

How local interactions of actin regulators yield large-scale organization of cell shape and movement is not well understood. Here we investigate how the WAVE complex organizes sheet-like lamellipodia. Using super-resolution microscopy, we find that the WAVE complex forms actin-independent 230-nm-wide rings that localize to regions of saddle membrane curvature. This pattern of enrichment could explain several emergent cell behaviors, such as expanding and self-straightening lamellipodia and the ability of endothelial cells to recognize and seal transcellular holes. The WAVE complex recruits IRSp53 to sites of saddle curvature but does not depend on IRSp53 for its own localization. Although the WAVE complex stimulates actin nucleation via the Arp2/3 complex, sheet-like protrusions are still observed in ARP2-null, but not WAVE complex-null, cells. Therefore, the WAVE complex has additional roles in cell morphogenesis beyond Arp2/3 complex activation. Our work defines organizing principles of the WAVE complex lamellipodial template and suggests how feedback between cell shape and actin regulators instructs cell morphogenesis.


Asunto(s)
Membrana Celular/metabolismo , Forma de la Célula , Seudópodos/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/genética , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Animales , Membrana Celular/genética , Membrana Celular/ultraestructura , Movimiento Celular , Células HEK293 , Células HL-60 , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/ultraestructura , Humanos , Macrófagos/metabolismo , Macrófagos/ultraestructura , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/ultraestructura , Ratones , Microscopía Confocal , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Transporte de Proteínas , Seudópodos/genética , Seudópodos/ultraestructura , Transducción de Señal , Factores de Tiempo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/genética
2.
PLoS Biol ; 17(10): e3000457, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31600188

RESUMEN

Migratory cells use distinct motility modes to navigate different microenvironments, but it is unclear whether these modes rely on the same core set of polarity components. To investigate this, we disrupted actin-related protein 2/3 (Arp2/3) and the WASP-family verprolin homologous protein (WAVE) complex, which assemble branched actin networks that are essential for neutrophil polarity and motility in standard adherent conditions. Surprisingly, confinement rescues polarity and movement of neutrophils lacking these components, revealing a processive bleb-based protrusion program that is mechanistically distinct from the branched actin-based protrusion program but shares some of the same core components and underlying molecular logic. We further find that the restriction of protrusion growth to one site does not always respond to membrane tension directly, as previously thought, but may rely on closely linked properties such as local membrane curvature. Our work reveals a hidden circuit for neutrophil polarity and indicates that cells have distinct molecular mechanisms for polarization that dominate in different microenvironments.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/genética , Actinas/genética , Polaridad Celular/genética , Quimiotaxis/genética , Familia de Proteínas del Síndrome de Wiskott-Aldrich/genética , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/metabolismo , Fenómenos Biomecánicos , Sistemas CRISPR-Cas , Adhesión Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Polaridad Celular/efectos de los fármacos , Factores Quimiotácticos/farmacología , Quimiotaxis/efectos de los fármacos , Edición Génica , Regulación de la Expresión Génica , Células HEK293 , Células HL-60 , Humanos , Microscopía de Fuerza Atómica , N-Formilmetionina Leucil-Fenilalanina/farmacología , Seudópodos/efectos de los fármacos , Seudópodos/metabolismo , Seudópodos/ultraestructura , Transducción de Señal , Propiedades de Superficie , Familia de Proteínas del Síndrome de Wiskott-Aldrich/deficiencia
3.
PLoS One ; 13(12): e0209301, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30576342

RESUMEN

Cell populations across nearly all forms of life generally maintain a characteristic cell type-dependent size, but how size control is achieved has been a long-standing question. The G1/S boundary of the cell cycle serves as a major point of size control, and mechanisms operating here restrict passage of cells to Start if they are too small. In contrast, it is less clear how size is regulated post-Start, during S/G2/M. To gain further insight into post-Start size control, we prepared budding yeast that can be reversibly blocked from bud initiation. While blocked, cells continue to grow isotropically, increasing their volume by more than an order of magnitude over unperturbed cells. Upon release from their block, giant mothers reenter the cell cycle and their progeny rapidly return to the original unperturbed size. We found this behavior to be consistent with a size-invariant 'timer' specifying the duration of S/G2/M. These results indicate that yeast use at least two distinct mechanisms at different cell cycle phases to ensure size homeostasis.


Asunto(s)
Saccharomyces cerevisiae/citología , Proteínas Adaptadoras Transductoras de Señales/genética , Ciclo Celular , Procesos de Crecimiento Celular/genética , Fase G1 , Homeostasis , Optogenética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
4.
J Cell Biol ; 216(8): 2515-2531, 2017 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-28687663

RESUMEN

Sensory systems use adaptation to measure changes in signaling inputs rather than absolute levels of signaling inputs. Adaptation enables eukaryotic cells to directionally migrate over a large dynamic range of chemoattractant. Because of complex feedback interactions and redundancy, it has been difficult to define the portion or portions of eukaryotic chemotactic signaling networks that generate adaptation and identify the regulators of this process. In this study, we use a combination of optogenetic intracellular inputs, CRISPR-based knockouts, and pharmacological perturbations to probe the basis of neutrophil adaptation. We find that persistent, optogenetically driven phosphatidylinositol (3,4,5)-trisphosphate (PIP3) production results in only transient activation of Rac, a hallmark feature of adaptive circuits. We further identify the guanine nucleotide exchange factor P-Rex1 as the primary PIP3-stimulated Rac activator, whereas actin polymerization and the GTPase-activating protein ArhGAP15 are essential for proper Rac turnoff. This circuit is masked by feedback and redundancy when chemoattractant is used as the input, highlighting the value of probing signaling networks at intermediate nodes to deconvolve complex signaling cascades.


Asunto(s)
Quimiotaxis de Leucocito , Neutrófilos/enzimología , Optogenética , Fosfatos de Fosfatidilinositol/metabolismo , Sistemas de Mensajero Secundario , Proteínas de Unión al GTP rac/metabolismo , Sistemas CRISPR-Cas , Activación Enzimática , Retroalimentación Fisiológica , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Marcación de Gen , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células HEK293 , Células HL-60 , Humanos , Microscopía Confocal , Microscopía por Video , Fosfatidilinositol 3-Quinasa/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Tiempo , Transfección , Quinasas p21 Activadas/metabolismo , Proteínas de Unión al GTP rac/genética
5.
Structure ; 23(8): 1492-1499, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26118535

RESUMEN

In budding yeast, the actin-binding protein Bud6 cooperates with formins Bni1 and Bnr1 to catalyze the assembly of actin filaments. The nucleation-enhancing activity of Bud6 requires both a "core" domain that binds to the formin and a "flank" domain that binds monomeric actin. Here, we describe the structure of the Bud6 flank domain in complex with actin. Two helices in Bud6(flank) interact with actin; one binds in a groove at the barbed end of the actin monomer in a manner closely resembling the helix of WH2 domains, a motif found in many actin nucleation factors. The second helix rises along the face of actin. Mutational analysis verifies the importance of these Bud6-actin contacts for nucleation-enhancing activity. The Bud6 binding site on actin overlaps with that of the formin FH2 domain and is also incompatible with inter-subunit contacts in F-actin, suggesting that Bud6 interacts only transiently with actin monomers during filament nucleation.


Asunto(s)
Actinas/química , Proteínas de Microfilamentos/química , Músculo Esquelético/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Actinas/genética , Actinas/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Conejos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Termodinámica
6.
Curr Opin Cell Biol ; 30: 60-7, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24998184

RESUMEN

Many eukaryotic cells regulate their polarity and motility in response to external chemical cues. While we know many of the linear connections that link receptors with downstream actin polymerization events, we have a much murkier understanding of the higher order positive and negative feedback loops that organize these processes in space and time. Importantly, physical forces and actin polymerization events do not simply act downstream of chemotactic inputs but are rather involved in a web of reciprocal interactions with signaling components to generate self-organizing pseudopods and cell polarity. Here we focus on recent progress and open questions in the field, including the basic unit of actin organization, how cells regulate the number and speed of protrusions, and 2D versus 3D migration.


Asunto(s)
Polaridad Celular , Quimiotaxis , Células Eucariotas/citología , Actinas/metabolismo , Animales , Polaridad Celular/fisiología , Células Eucariotas/metabolismo , Humanos , Seudópodos/metabolismo , Transducción de Señal
7.
Mol Biol Cell ; 25(11): 1730-43, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24719456

RESUMEN

Asymmetric cell growth and division rely on polarized actin cytoskeleton remodeling events, the regulation of which is poorly understood. In budding yeast, formins stimulate the assembly of an organized network of actin cables that direct polarized secretion. Here we show that the Fer/Cip4 homology-Bin amphiphysin Rvs protein Hof1, which has known roles in cytokinesis, also functions during polarized growth by directly controlling the activities of the formin Bnr1. A mutant lacking the C-terminal half of Hof1 displays misoriented and architecturally altered cables, along with impaired secretory vesicle traffic. In vitro, Hof1 inhibits the actin nucleation and elongation activities of Bnr1 without displacing the formin from filament ends. These effects depend on the Src homology 3 domain of Hof1, the formin homology 1 (FH1) domain of Bnr1, and Hof1 dimerization, suggesting a mechanism by which Hof1 "restrains" the otherwise flexible FH1-FH2 apparatus. In vivo, loss of inhibition does not alter actin levels in cables but, instead, cable shape and functionality. Thus Hof1 tunes formins to sculpt the actin cable network.


Asunto(s)
Actinas/metabolismo , Polaridad Celular , Proteínas del Citoesqueleto/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/crecimiento & desarrollo , Citoesqueleto de Actina/metabolismo , Proliferación Celular , Tamaño de la Célula , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/química , Mutación/genética , Fenotipo , Profilinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
8.
J Cell Biol ; 201(4): 595-611, 2013 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-23671312

RESUMEN

Formins associate with other nucleators and nucleation-promoting factors (NPFs) to stimulate collaborative actin assembly, but the mechanisms regulating these interactions have been unclear. Yeast Bud6 has an established role as an NPF for the formin Bni1, but whether it also directly regulates the formin Bnr1 has remained enigmatic. In this paper, we analyzed NPF-impaired alleles of bud6 in a bni1Δ background and found that Bud6 stimulated Bnr1 activity in vivo. Furthermore, Bud6 bound directly to Bnr1, but its NPF effects were masked by a short regulatory sequence, suggesting that additional factors may be required for activation. We isolated a novel in vivo binding partner of Bud6, Yor304c-a/Bil1, which colocalized with Bud6 and functioned in the Bnr1 pathway for actin assembly. Purified Bil1 bound to the regulatory sequence in Bud6 and triggered NPF effects on Bnr1. These observations define a new mode of formin regulation, which has important implications for understanding NPF-nucleator pairs in diverse systems.


Asunto(s)
Actinas/química , Proteínas Portadoras/fisiología , Proteínas del Citoesqueleto/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Microfilamentos/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Animales , Proteínas Portadoras/genética , Proteínas del Citoesqueleto/genética , Proteínas Fluorescentes Verdes/metabolismo , Cinética , Ligandos , Espectrometría de Masas , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/fisiología , Músculo Esquelético/metabolismo , Mutación , Dominios y Motivos de Interacción de Proteínas , Conejos , Saccharomyces cerevisiae/genética
9.
Proc Natl Acad Sci U S A ; 109(50): E3424-33, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-23161908

RESUMEN

Formin proteins and their associated factors cooperate to assemble unbranched actin filaments in diverse cellular structures. The Saccharomyces cerevisiae formin Bni1 and its associated nucleation-promoting factor (NPF) Bud6 generate actin cables and mediate polarized cell growth. Bud6 binds to both the tail of the formin and G-actin, thereby recruiting monomeric actin to the formin to create a nucleation seed. Here, we structurally and functionally dissect the nucleation-promoting C-terminal region of Bud6 into a Bni1-binding "core" domain and a G-actin binding "flank" domain. The ∼2-Šresolution crystal structure of the Bud6 core domain reveals an elongated dimeric rod with a unique fold resembling a triple-helical coiled-coil. Binding and actin-assembly assays show that conserved residues on the surface of this domain mediate binding to Bni1 and are required for NPF activity. We find that the Bni1 dimer binds two Bud6 dimers and that the Bud6 flank binds a single G-actin molecule. These findings suggest a model in which a Bni1/Bud6 complex with a 2:4 subunit stoichiometry assembles a nucleation seed with Bud6 coordinating up to four actin subunits.


Asunto(s)
Proteínas de Microfilamentos/química , Proteínas de Saccharomyces cerevisiae/química , Actinas/química , Actinas/metabolismo , Secuencia de Aminoácidos , Unión Competitiva , Secuencia Conservada , Cristalografía por Rayos X , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Modelos Anatómicos , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Electricidad Estática
10.
Mol Biol Cell ; 22(21): 4016-28, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21880892

RESUMEN

Formins are a conserved family of actin assembly-promoting factors with diverse biological roles, but how their activities are regulated in vivo is not well understood. In Saccharomyces cerevisiae, the formins Bni1 and Bnr1 are required for the assembly of actin cables and polarized cell growth. Proper cable assembly further requires Bud6. Previously it was shown that Bud6 enhances Bni1-mediated actin assembly in vitro, but the biochemical mechanism and in vivo role of this activity were left unclear. Here we demonstrate that Bud6 specifically stimulates the nucleation rather than the elongation phase of Bni1-mediated actin assembly, defining Bud6 as a nucleation-promoting factor (NPF) and distinguishing its effects from those of profilin. We generated alleles of Bud6 that uncouple its interactions with Bni1 and G-actin and found that both interactions are critical for NPF activity. Our data indicate that Bud6 promotes filament nucleation by recruiting actin monomers to Bni1. Genetic analysis of the same alleles showed that Bud6 regulation of formin activity is critical for normal levels of actin cable assembly in vivo. Our results raise important mechanistic parallels between Bud6 and WASP, as well as between Bud6 and other NPFs that interact with formins such as Spire.


Asunto(s)
Actinas/química , Proteínas de Microfilamentos/química , Multimerización de Proteína , Proteínas de Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Colorantes Fluorescentes/química , Técnicas de Inactivación de Genes , Cinética , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Microscopía Fluorescente , Datos de Secuencia Molecular , Ploidias , Profilinas/química , Pirenos/química , Conejos , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Imagen de Lapso de Tiempo
11.
Curr Biol ; 21(5): 384-90, 2011 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-21333540

RESUMEN

Formins are a large family of actin assembly-promoting proteins with many important biological roles. However, it has remained unclear how formins nucleate actin polymerization. All other nucleators are known to recruit actin monomers as a central part of their mechanisms. However, the actin-nucleating FH2 domain of formins lacks appreciable affinity for monomeric actin. Here, we found that yeast and mammalian formins bind actin monomers but that this activity requires their C-terminal DAD domains. Furthermore, we observed that the DAD works in concert with the FH2 to enhance nucleation without affecting the rate of filament elongation. We dissected this mechanism in mDia1, mapped nucleation activity to conserved residues in the DAD, and demonstrated that DAD roles in nucleation and autoinhibition are separable. Furthermore, DAD enhancement of nucleation was independent of contributions from the FH1 domain to nucleation. Together, our data show that (1) the DAD has dual functions in autoinhibition and nucleation; (2) the FH1, FH2, and DAD form a tripartite nucleation machine; and (3) formins nucleate by recruiting actin monomers and therefore are more similar to other nucleators than previously thought.


Asunto(s)
Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Profilinas/metabolismo , Estructura Terciaria de Proteína/fisiología , Animales , Clonación Molecular , Escherichia coli , Forminas , Humanos , Mutagénesis Sitio-Dirigida , Multimerización de Proteína , Conejos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae , Análisis de Secuencia de ADN , Imagen de Lapso de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA