Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ann Biomed Eng ; 49(11): 3046-3079, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33723705

RESUMEN

Fourteen simulated underbody blast impact sled tests were performed using a horizontal deceleration sled with the aim of evaluating the dynamic response of the spine in under various conditions. Conditions were characterized by input (peak velocity and time-to-peak velocity for the seat and floor), seat type (rigid or padded) and the presence of personnel protective equipment (PPE). A 50% (T12) and 30% (T8) reduction in the thoracic spine response for the specimens outfitted with PPE was observed. Longer duration seat pulses (55 ms) resulted in a 68-78% reduction in the magnitude of spine responses and a reduction in the injuries at the pelvis, thoracic and lumbar regions when compared to shorter seat pulses (10 ms). The trend analysis for the peak Z (caudal to cranial) acceleration measured along the spine showed a quadratic fit (p < 0.05), rejecting the hypothesis that the magnitude of the acceleration would decrease linearly as the load traveled caudal to cranial through the spine during an Underbody Blast (UBB) event. A UBB event occurs when an explosion beneath a vehicle propels the vehicle and its occupants vertically. Further analysis revealed a relationship (p < 0.01) between peak sacrum acceleration and peak spine accelerations measured at all levels. This study provides an initial analysis of the relationship between input conditions and spine response in a simulated underbody blast environment.


Asunto(s)
Traumatismos por Explosión , Explosiones , Vértebras Lumbares/lesiones , Sacro/lesiones , Vértebras Torácicas/lesiones , Aceleración , Anciano , Cadáver , Humanos , Región Lumbosacra/lesiones , Masculino , Persona de Mediana Edad , Equipo de Protección Personal
2.
Traffic Inj Prev ; 20(5): 515-520, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31180730

RESUMEN

Objective: The purpose of this study was to investigate the effect of different loading configurations on the WorldSID 50th percentile male dummy instrumented either with the Infra-Red Telescoping Rod for the Assessment of Chest Compression (IR-TRACC) or the RibEye™ rib deflection measurement system. Methods: The optical sensors of the RibEye system were used to capture the multipoint deformation of the dummy at frontal and rearward off-center locations in addition to the center of the rib location. The experimental setup consisted of 2 types of loadings: Low severity and high severity. Low-severity loading was performed by deploying a fixture-mounted side airbag on the dummy and high-severity loading was achieved by deploying a driver front airbag mounted in a similar fashion. The low-severity condition aimed at deforming the dummy's ribs locally at off-center locations where the RibEye light emitting diodes (LEDs) were positioned to capture the deformations at those locations. The high-severity condition aimed at loading the dummy at high speed in lateral and oblique directions similar to what is experienced by dummies in side impacts. Results: In the low-severity tests, the peak deflections, in terms of length change, were approximately 15-20 mm, whereas for the high-severity cases the peak deflections were in the range of 30-40 mm for both IR-TRACC and RibEye cases. Conclusions: For similar physical insults, dummies with the IR-TRACC and RibEye systems showed varying results for both length changes and the shoulder forces depending on the severity and direction of loading. Under purely lateral loading, the mid-length changes with the RibEye and the 1D IR-TRACC were comparable. In the oblique loading conditions, more differences were seen with the 2 systems depending on the impact direction. The shoulder forces consistently differed between the 2 systems. In the frontal oblique low-severity cases, the ribs pivoted along the spine end and the length change was not found to be a suitable parameter to quantify rib deformation in such loading scenarios.


Asunto(s)
Accidentes de Tránsito/estadística & datos numéricos , Maniquíes , Costillas/fisiología , Tórax/fisiología , Airbags , Humanos , Masculino , Soporte de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA