Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 61
1.
Biomedicines ; 12(3)2024 Mar 13.
Article En | MEDLINE | ID: mdl-38540249

This is the first in vivo study to investigate the neuroprotective effects of krypton on focal cerebral ischemia. The aim of the study was to analyze the effect of 2 h of inhalation of a krypton-oxygen mixture (Kr 70%/O2 30%) on the recovery of neurological functions and the degree of brain damage in rats after photoinduced ischemic stroke (PIS) and to investigate the possible mechanisms responsible for this neuroprotection. Experiments were performed on male Wistar rats weighing 250-300 g (n = 32). Animals were randomized into four groups. Two groups (n = 20) underwent photoinduced ischemic stroke, followed by 2 h of inhalation of krypton-oxygen mixture consisting of Kr 70%/O2 30% or a nitrogen-oxygen breathing mixture consisting of N2 70%/O2 30%, followed by neurological examinations on days 3 and 7. The other two groups (n = 12) received only gas mixtures of the same concentration and exposure duration as in those in the PIS groups, then Western blot analysis of the potential molecular mechanisms was performed. The results of the study show that treatment with the krypton-oxygen mixture consisting of Kr 70%/O2 30% improves the neurological status on day 7 of observation, reduces the lesion volume according to the MRI examination and the number of Iba-1- and caspase-3-positive cells in the damaged area, promotes the activation of neoangiogenesis (an increase in the von Willebrand factor), and reduces the penumbra area and the number of NeuN-positive cells in it on day 14 of observation. Inhalation of the krypton-oxygen mixture also significantly increases the levels of phosphorylated AKT kinase (protein kinase B) and glycogen synthase kinase 3b (pGSK3b) and promotes the expression of transcription factor Nrf2, which was accompanied by the lowered expression of transcription factor NFkB (p50). Thus, we showed pronounced neuroprotection induced by krypton inhalation after stroke and identified the signaling pathways that may be responsible for restoring neurological functions and reducing damage.

2.
Diagnostics (Basel) ; 13(20)2023 Oct 18.
Article En | MEDLINE | ID: mdl-37892064

Clinical orthostatic hypotension (OH) and hypertension (OHT) are risk factors for arterial hypertension (AH) and cardiovascular diseases (CVD) and are associated with increased vascular stiffness. Preclinical OH and OHT are poorly understood. The main objective was to investigate preclinical orthostatic abnormalities and their association with increased vascular stiffness in different age groups of adults. A specially designed head-up tilt test standardized for hydrostatic column height was used to detect them. Three age groups of clinically healthy subjects were examined. In the group of young adults up to 30 years old, a significant predominance of orthostatic normotension (ONT) and an insignificant number of subjects with preclinical OH and OHT were found. In the age group over 45 years, compared to the group under 30 years, there was a twofold decrease in the proportion of individuals with ONT and a significant increase with preclinical OH and OHT. In all age groups, there was a significant orthostatic increase in vascular stiffness (as measured by the brachial-ankle pulse wave velocity (baPWV), which was recovered to the baseline level when returning to the supine position. Overall, subjects with preclinical OH and OHT had significantly higher baPWV values compared to those with ONT (p = 0.001 and p = 0.002, respectively), with all subjects having vascular stiffness values within normal age-related values.

3.
Viruses ; 15(8)2023 08 02.
Article En | MEDLINE | ID: mdl-37632023

COVID-19-related thrombosis affects the venous and arterial systems. Data from 156 autopsies of COVID-19 patients were retrospectively analyzed to investigate the pattern of thrombotic complications and factors associated with pulmonary artery thrombosis and thromboembolism. Thrombotic complications were observed in a significant proportion (n = 68, 44%), with pulmonary artery thrombosis the most frequently identified thrombotic event (42, 27%). Multivariate analysis revealed that the length of hospital stay (OR 1.1, p = 0.004), neutrophil infiltration in the alveolar spaces (OR 3.6, p = 0.002), and the absence of hyaline membranes (OR 0.1, p = 0.01) were associated with thrombotic complications. Neutrophil infiltration in the alveolar spaces (OR 8, p < 0.001) and the absence of hyaline membranes (OR 0.1, p = 0.003) were also independent predictors of pulmonary artery thrombosis. The association of pulmonary artery thrombosis with an absence of hyaline membranes suggests it occurs later in the course of COVID-19 infection. As neutrophil infiltration in the alveolar spaces may indicate bacterial infection, our studies suggest the consideration of bacterial infections in these critically ill patients.


COVID-19 , Thrombosis , Humans , Pulmonary Artery , Retrospective Studies , COVID-19/complications , Thrombosis/etiology , Veins
4.
Front Genet ; 14: 1152768, 2023.
Article En | MEDLINE | ID: mdl-37456666

Rare variants affecting host defense against pathogens may be involved in COVID-19 severity, but most rare variants are not expected to have a major impact on the course of COVID-19. We hypothesized that the accumulation of weak effects of many rare functional variants throughout the exome may contribute to the overall risk in patients with severe disease. This assumption is consistent with the omnigenic model of the relationship between genetic and phenotypic variation in complex traits, according to which association signals tend to spread across most of the genome through gene regulatory networks from genes outside the major pathways to disease-related genes. We performed whole-exome sequencing and compared the burden of rare variants in 57 patients with severe and 29 patients with mild/moderate COVID-19. At the whole-exome level, we observed an excess of rare, predominantly high-impact (HI) variants in the group with severe COVID-19. Restriction to genes intolerant to HI or damaging missense variants increased enrichment for these classes of variants. Among various sets of genes, an increased signal of rare HI variants was demonstrated predominantly for primary immunodeficiency genes and the entire set of genes associated with immune diseases, as well as for genes associated with respiratory diseases. We advocate taking the ideas of the omnigenic model into account in COVID-19 studies.

5.
Mitochondrion ; 72: 11-21, 2023 09.
Article En | MEDLINE | ID: mdl-37453498

Type 1 diabetes mellitus (T1DM) is a T-cell-mediated autoimmune disease characterized by the damage of insulin-secreting ß-cells in the pancreatic islets of Langerhans. To date, its etiology is not fully understood, despite decades of active search for root causes, and that underlines the complexity of the disease pathogenesis. It was found that mitophagy plays a regulatory role in the development of autoimmune response during T1DM pathogenesis by preventing the accumulation of defective/dysfunctional mitochondria in pancreatic cells. Mitochondrial dysfunction due to impaired mitophagy with the release of mitochondrial reactive oxygen species (mtROS) and mitochondrial DNA (mtDNA) contributes to initiating an inflammatory response by elevating pro-inflammatory cytokines and interacting with receptors like those involved in the pathogen-associated response. Moreover, mtROS and mtDNA activate pathways leading to the development of chronic inflammation, which is tightly implicated in T1DM autoimmunity. In this review, we summarized the evidence highlighting the functional role of mitophagy and mitochondria in the development of immune response and chronic inflammation during T1DM pathogenesis. Several anti-inflammatory and mitophagy-related treatment options have been explored.


Diabetes Mellitus, Type 1 , Humans , Diabetes Mellitus, Type 1/metabolism , Mitophagy/genetics , Mitochondria/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Inflammation/metabolism , Reactive Oxygen Species/metabolism
6.
Biomedicines ; 11(5)2023 May 09.
Article En | MEDLINE | ID: mdl-37239078

Despite the enormous interest in COVID-19, there is no clear understanding of the mechanisms underlying the neurological symptoms in COVID-19. Microglia have been hypothesized to be a potential mediator of the neurological manifestations associated with COVID-19. In most existing studies to date, morphological changes in internal organs, including the brain, are considered in isolation from clinical data and defined as a consequence of COVID-19. We performed histological immunohistochemical (IHC) studies of brain autopsy materials of 18 patients who had died from COVID-19. We evaluated the relationship of microglial changes with the clinical and demographic characteristics of the patients. The results revealed neuronal alterations and circulatory disturbances. We found an inverse correlation between the integral density Iba-1 (microglia/macrophage-specific marker) IHC staining and the duration of the disease (R = -0.81, p = 0.001), which may indicate a reduced activity of microglia and do not exclude their damage in the long-term course of COVID-19. The integral density of Iba-1 IHC staining was not associated with other clinical and demographic factors. We observed a significantly higher number of microglial cells in close contact with neurons in female patients, which confirms gender differences in the course of the disease, indicating the need to study the disease from the standpoint of personalized medicine.

7.
Korean J Anesthesiol ; 76(5): 490-500, 2023 10.
Article En | MEDLINE | ID: mdl-37232073

BACKGROUND: Early postoperative neurocognitive disorders (ePND), include both emergence delirium, which is defined as very early onset postoperative delirium, and emergence agitation, defined as motor arousal. Although research on anesthesia emergence is limited, ePND are likely associated with unfavorable outcomes. This meta-analysis assessed the effect of ePND on clinically relevant outcomes. METHODS: A systematic search of studies published between 2002 and 2022 on MEDLINE, PubMed, Google Scholar, and the Cochrane Library was performed. Studies that included adults with emergence agitation and/or delirium and reported at least one of the following outcomes: mortality, postoperative delirium, length of post-anesthesia care unit stay, or length of hospital stay were included. The internal validity, risk of bias, and certainty of the evidence were assessed. RESULTS: A total of 16,028 patients from 21 prospective observational studies and one case-control retrospective study were included in this meta-analysis. The occurrence rate of ePND was 13% (data excluding the case-control study). The mortality rate was 2.4% in patients with ePND vs. 1.2% in the normal emergence group (risk ratio [RR]: 2.6, P = 0.01, very low quality of evidence). Postoperative delirium occurred in 29% of patients with ePND and 4.5% of patients with normal emergence (RR: 9.5, P < 0.001, I2 = 93%). Patients with ePND had a prolonged length of post-anesthesia care unit stay (P = 0.004) and length of hospital stay (P < 0.001). CONCLUSIONS: This meta-analysis suggests that ePND are associated with twice the risk of mortality and a 9-fold increased risk of postoperative delirium.


Anesthesia , Emergence Delirium , Adult , Humans , Emergence Delirium/epidemiology , Emergence Delirium/etiology , Retrospective Studies , Case-Control Studies , Prospective Studies , Observational Studies as Topic
8.
Viruses ; 14(12)2022 11 23.
Article En | MEDLINE | ID: mdl-36560618

Increasing evidence suggests that gut dysbiosis is associated with coronavirus disease 2019 (COVID-19) infection and may persist long after disease resolution. The excessive use of antimicrobials in patients with COVID-19 can lead to additional destruction of the microbiota, as well as to the growth and spread of antimicrobial resistance. The problem of bacterial resistance to antibiotics encourages the search for alternative methods of limiting bacterial growth and restoring the normal balance of the microbiota in the human body. Bacteriophages are promising candidates as potential regulators of the microbiota. In the present study, two complex phage cocktails targeting multiple bacterial species were used in the rehabilitation of thirty patients after COVID-19, and the effectiveness of the bacteriophages against the clinical strain of Klebsiella pneumoniae was evaluated for the first time using real-time visualization on a 3D Cell Explorer microscope. Application of phage cocktails for two weeks showed safety and the absence of adverse effects. An almost threefold statistically significant decrease in the anaerobic imbalance ratio, together with an erythrocyte sedimentation rate (ESR), was detected. This work will serve as a starting point for a broader and more detailed study of the use of phages and their effects on the microbiome.


Bacterial Infections , Bacteriophages , COVID-19 , Microbiota , Humans , COVID-19/therapy , Bacteria
9.
Curr Issues Mol Biol ; 44(10): 4888-4901, 2022 Oct 14.
Article En | MEDLINE | ID: mdl-36286047

Vascular endothelial growth factors (VEGFs) are important regulators of angiogenesis, neuroprotection, and neurogenesis. Studies have indicated the association of VEGF dysregulation with the development of neurodegenerative and cerebrovascular diseases. We studied the changes in serum levels of VEGF-A, VEGFR-1, and VEGFR-2 in patients at various phases of ischemic and hemorrhagic strokes. Quantitative assessment of VEGF-A, VEGFR-1, and VEGFR-2 in serum of patients with hemorrhagic or ischemic stroke was performed by enzyme immunoassay in the hyper-acute (1−24 h from the onset), acute (up to 1−7 days), and early subacute (7 days to 3 months) phases of stroke, and then compared with the control group and each other. Results of our retrospective study demonstrated different levels of VEGF-A and its receptors at various phases of ischemic and hemorrhagic strokes. In ischemic stroke, increased VEGFR-2 level was found in the hyper-acute (p = 0.045) and acute phases (p = 0.024), while elevated VEGF-A and reduced VEGFR-1 levels were revealed in the early subacute phase (p = 0.048 and p = 0.012, respectively). In hemorrhagic stroke, no significant changes in levels of VEGF-A and its receptors were identified in the hyper-acute phase. In the acute and early subacute phases there was an increase in levels of VEGF-A (p < 0.001 and p = 0.006, respectively) and VEGFR-2 (p < 0.001 and p = 0.012, respectively). Serum levels of VEGF-A and its receptors in patients with hemorrhagic and ischemic stroke indicate different pathogenic pathways depending on the phase of the disease.

10.
Front Cardiovasc Med ; 9: 959285, 2022.
Article En | MEDLINE | ID: mdl-36072873

Atherosclerosis is a predecessor of numerous cardiovascular diseases (CVD), which often lead to morbidity and mortality. Despite the knowledge of the pathogenesis of atherosclerosis, an essential gap in our understanding is the exact trigger mechanism. A wide range of risk factors have been discovered; however, a majority of them are too general to clarify the launching mechanism of atherogenesis. Some risk factors are permanent (age, gender, genetic heritage) and others can be modified [tobacco smoking, physical inactivity, poor nutrition, high blood pressure, type 2 diabetes (T2D), dyslipidemia, and obesity]. All of them have to be taken into account. In the scope of this review, our attention is focused on hypertension, which is considered the most widespread among all modifiable risk factors for atherosclerosis development. Moreover, high blood pressure is the most investigated risk factor. The purpose of this review is to summarize the data on hypertension as a risk factor for atherosclerosis development and the risk assessment.

11.
Biomedicines ; 10(9)2022 Sep 01.
Article En | MEDLINE | ID: mdl-36140257

Arterial hypertension (AH) remains the most common disease. One possible way to improve the effectiveness of the primary prevention of AH is to identify and control the preclinical orthostatic disturbances that precede the development of AH. The aim of the study was to determine the feasibility of a new protocol for the head-up tilt test (HUTT) with a standardized hydrostatic column height for the detection of asymptomatic orthostatic circulatory disorders and their racial differences in young African and European adults. METHODS: In total, 80 young healthy adults (40 African and 40 European) aged 20-23 years performed the HUTT with a standardized hydrostatic column height of 133 cm. The hemodynamic parameters were recorded using a Task Force Monitor (3040i). The cardio-ankle vascular index (CAVI) was measured using a VaSera VS-2000 volumetric sphygmograph. RESULTS: The baseline and orthostatic hemodynamic changes in both racial groups were within normal limits. Orthostatic circulatory disturbances were not detected in 70% of the European participants and 65% of the African participants; however, preclinical orthostatic hypertension, which precedes AH, was detected using the new HUTT protocol in 32.5% of the African participants and 20% of the European participants. The baseline CAVI was higher in the European group compared to the African group. CONCLUSION: The results of this study showed the feasibility of the detection of preclinical orthostatic disturbances in young adults and the detection of their racial differences using the HUTT protocol, providing the use of a standard gravity load. Further study on the evolution of preclinical orthostatic disturbances and their relation to increased vascular stiffness is necessary among large samples.

12.
Metabolites ; 12(7)2022 Jul 11.
Article En | MEDLINE | ID: mdl-35888759

Rheumatoid arthritis (RA) is a progressive autoimmune disease that affects the joints. It has been proven that, with the development of RA, there are changes in the metabolism of cells located in the focus of inflammation. In this article, we describe the connection between metabolism and inflammation in the context of rheumatoid arthritis. We consider in detail the changes in metabolic processes and their subsequent immunomodulatory effects. In particular, we consider how changes in mitochondrial functioning lead to the modulation of metabolism in rheumatoid arthritis. We also describe the main features of the metabolism in cells present in the synovial membrane during inflammation, and we discuss possible targets for the therapy of rheumatoid arthritis.

13.
Int J Mol Sci ; 23(13)2022 Jun 23.
Article En | MEDLINE | ID: mdl-35805958

Mitochondrial dysfunction is now recognized as a contributing factor to neurodegenerative diseases, including Alzheimer's disease (AD). Mitochondria are signaling organelles with a variety of functions ranging from energy production to the regulation of cellular metabolism, energy homeostasis, and response to stress. The successful functioning of these complex processes is critically dependent on the accuracy of mitochondrial dynamics, which includes the ability of mitochondria to change shape and position in the cell, which is necessary to maintain proper function and quality control, especially in polarized cells such as neurons. There has been much evidence to suggest that the disruption of mitochondrial dynamics may play a critical role in the pathogenesis of AD. This review highlights aspects of altered mitochondrial dynamics in AD that may contribute to the etiology of this debilitating condition. We also discuss therapeutic strategies to improve mitochondrial dynamics and function that may provide an alternative treatment approach.


Alzheimer Disease , Mitochondrial Dynamics , Alzheimer Disease/metabolism , Humans , Mitochondria/metabolism , Neurons/metabolism
14.
Int J Mol Sci ; 23(5)2022 Feb 24.
Article En | MEDLINE | ID: mdl-35269645

For the past several decades, humanity has been dealing with HIV. This disease is one of the biggest global health problems. Fortunately, modern antiretroviral therapy allows patients to manage the disease, improving their quality of life and their life expectancy. In addition, the use of these drugs makes it possible to reduce the risk of transmission of the virus to almost zero. Atherosclerosis is another serious pathology that leads to severe health problems, including disability and, often, the death of the patient. An effective treatment for atherosclerosis has not yet been developed. Both types of immune response, innate and adaptive, are important components of the pathogenesis of this disease. In this regard, the peculiarities of the development of atherosclerosis in HIV carriers are of particular scientific interest. In this review, we have tried to summarize the data on atherosclerosis and its development in HIV carriers. We also looked at the classic therapeutic methods and their features concerning the concomitant diagnosis.


Atherosclerosis , HIV Infections , Atherosclerosis/pathology , Global Health , HIV Infections/complications , HIV Infections/drug therapy , Humans , Life Expectancy , Quality of Life
15.
Biomedicines ; 10(2)2022 Jan 24.
Article En | MEDLINE | ID: mdl-35203463

Kruppel like factor 2 (KLF2) is a mechanosensitive transcription factor participating in the regulation of vascular endothelial cells metabolism. Activating KLF2 in endothelial cells induces eNOS (endothelial nitric oxide synthase) expression, subsequent NO (nitric oxide) release, and vasodilatory effect. In addition, many KLF2-regulated genes participate in the anti-thrombotic, antioxidant, and anti-inflammatory activities, thereby preventing atherosclerosis development and progression. In this review, we summarise recent evidence suggesting that KLF2 plays a major role in regulating atheroprotective effects in endothelial cells. We also discuss several recently identified repurposed drugs and natural plant-based bioactive compounds with KLF2-mediated atheroprotective activities. Herein, we present a comprehensive overview of the role of KLF2 in atherosclerosis and as a pharmacological target for different drugs and natural compounds and highlight the potential application of these phytochemicals for the treatment of atherosclerosis.

16.
Viruses ; 14(2)2022 01 21.
Article En | MEDLINE | ID: mdl-35215805

The increased plasma levels of von Willebrand factor (VWF) in patients with COVID-19 was reported in many studies, and its correlation with disease severity and mortality suggest its important role in the pathogenesis of thrombosis in COVID-19. We performed histological and immunohistochemical studies of the lungs of 29 patients who died from COVID-19. We found a significant increase in the intensity of immunohistochemical reaction for VWF in the pulmonary vascular endothelium when the disease duration was more than 10 days. In the patients who had thrombotic complications, the VWF immunostaining in the pulmonary vascular endothelium was significantly more intense than in nonsurvivors without thrombotic complications. Duration of disease and thrombotic complications were found to be independent predictors of increased VWF immunostaining in the endothelium of pulmonary vessels. We also revealed that bacterial pneumonia was associated with increased VWF staining intensity in pulmonary arterial, arteriolar, and venular endothelium, while lung ventilation was an independent predictor of increased VWF immunostaining in arterial endothelium. The results of the study demonstrated an important role of endothelial VWF in the pathogenesis of thrombus formation in COVID-19.


COVID-19/complications , Lung/blood supply , Venous Thrombosis/etiology , Venous Thrombosis/pathology , von Willebrand Factor/analysis , Adult , Autopsy , COVID-19/blood , Endothelium, Vascular/immunology , Female , Humans , Immunohistochemistry/methods , Lung/pathology , Male , Middle Aged , Pneumonia, Bacterial/immunology , Pulmonary Embolism , Severity of Illness Index , Venous Thrombosis/classification
17.
Int J Mol Sci ; 23(3)2022 Jan 25.
Article En | MEDLINE | ID: mdl-35163247

Ageing is an unavoidable multi-factorial process, characterised by a gradual decrease in physiological functionality and increasing vulnerability of the organism to environmental factors and pathogens, ending, eventually, in death. One of the most elaborated ageing theories implies a direct connection between ROS-mediated mtDNA damage and mutations. In this review, we focus on the role of mitochondrial metabolism, mitochondria generated ROS, mitochondrial dynamics and mitophagy in normal ageing and pathological conditions, such as inflammation. Also, a chronic form of inflammation, which could change the long-term status of the immune system in an age-dependent way, is discussed. Finally, the role of inflammaging in the most common neurodegenerative diseases, such as Alzheimer's and Parkinson's, is also discussed.


DNA, Mitochondrial/genetics , Inflammation/genetics , Mitochondria/genetics , Mitophagy/genetics , Mutation/genetics , Animals , Humans , Reactive Oxygen Species/metabolism
18.
Int J Mol Sci ; 23(2)2022 Jan 07.
Article En | MEDLINE | ID: mdl-35054835

Cardiovascular diseases (CVDs) are the leading cause of death globally, representing approximately 32% of all deaths worldwide. Molecular chaperones are involved in heart protection against stresses and age-mediated accumulation of toxic misfolded proteins by regulation of the protein synthesis/degradation balance and refolding of misfolded proteins, thus supporting the high metabolic demand of the heart cells. Heat shock protein 90 (HSP90) is one of the main cardioprotective chaperones, represented by cytosolic HSP90a and HSP90b, mitochondrial TRAP1 and ER-localised Grp94 isoforms. Currently, the main way to study the functional role of HSPs is the application of HSP inhibitors, which could have a different way of action. In this review, we discussed the recently investigated role of HSP90 proteins in cardioprotection, atherosclerosis, CVDs development and the involvements of HSP90 clients in the activation of different molecular pathways and signalling mechanisms, related to heart ageing.


Aging/metabolism , Cardiovascular Diseases/metabolism , HSP90 Heat-Shock Proteins/metabolism , Heart/physiology , Gene Expression Regulation , Humans , Signal Transduction
19.
Int J Mol Sci ; 22(13)2021 Jun 22.
Article En | MEDLINE | ID: mdl-34206708

Atherosclerosis has complex pathogenesis, which involves at least three serious aspects: inflammation, lipid metabolism alterations, and endothelial injury. There are no effective treatment options, as well as preventive measures for atherosclerosis. However, this disease has various severe complications, the most severe of which is cardiovascular disease (CVD). It is important to note, that CVD is among the leading causes of death worldwide. The renin-angiotensin-aldosterone system (RAAS) is an important part of inflammatory response regulation. This system contributes to the recruitment of inflammatory cells to the injured site and stimulates the production of various cytokines, such as IL-6, TNF-a, and COX-2. There is also an association between RAAS and oxidative stress, which is also an important player in atherogenesis. Angiotensin-II induces plaque formation at early stages, and this is one of the most crucial impacts on atherogenesis from the RAAS. Importantly, while stimulating the production of ROS, Angiotensin-II at the same time decreases the generation of NO. The endothelium is known as a major contributor to vascular function. Oxidative stress is the main trigger of endothelial dysfunction, and, once again, links RAAS to the pathogenesis of atherosclerosis. All these implications of RAAS in atherogenesis lead to an explicable conclusion that elements of RAAS can be promising targets for atherosclerosis treatment. In this review, we also summarize the data on treatment approaches involving cytokine targeting in CVD, which can contribute to a better understanding of atherogenesis and even its prevention.


Atherosclerosis/etiology , Atherosclerosis/metabolism , Disease Susceptibility , Renin-Angiotensin System , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Animals , Atherosclerosis/diagnosis , Atherosclerosis/therapy , Biomarkers , Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , Clinical Trials as Topic , Disease Management , Drug Evaluation, Preclinical , Endothelium/metabolism , Humans , Molecular Targeted Therapy , Oxidative Stress , Reactive Oxygen Species/metabolism , Renin-Angiotensin System/drug effects
20.
Int J Mol Sci ; 22(13)2021 Jun 30.
Article En | MEDLINE | ID: mdl-34209109

Atherosclerosis is a well-known global health problem. Despite the high prevalence of the disease, numerous aspects of pathogenesis remain unclear. Subsequently, there are still no cure or adequate preventive measures available. Atherogenesis is now considered a complex interplay between lipid metabolism alterations, oxidative stress, and inflammation. Inflammation in atherogenesis involves cellular elements of both innate (such as macrophages and monocytes) and adaptive immunity (such as B-cells and T-cells), as well as various cytokines cascades. Because inflammation is, in general, a well-investigated therapeutic target, and strategies for controlling inflammation have been successfully used to combat a number of other diseases, inflammation seems to be the preferred target for the treatment of atherosclerosis as well. In this review, we summarized data on targeting the most studied inflammatory molecular targets, CRP, IL-1ß, IL-6, IFN-γ, and TNF-α. Studies in animal models have shown the efficacy of anti-inflammatory therapy, while clinical studies revealed the incompetence of existing data, which blocks the development of an effective atheroprotective drug. However, all data on cytokine targeting give evidence that anti-inflammatory therapy can be a part of a complex treatment.


Adaptive Immunity , Anti-Inflammatory Agents/therapeutic use , Atherosclerosis , Cytokines/immunology , Animals , Atherosclerosis/drug therapy , Atherosclerosis/immunology , Atherosclerosis/pathology , Humans , Inflammation/drug therapy , Inflammation/immunology , Inflammation/pathology
...