Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
NPJ Vaccines ; 8(1): 179, 2023 Nov 21.
Article En | MEDLINE | ID: mdl-37990024

This study reports that most patients with NSCLC had a significant increase in the nAb response to the currently circulating Omicron variants after bivalent booster vaccination and had Ab titers comparable to healthy participants. Interestingly, though the durability of the nAb response persisted in most of the healthy participants, patients with NSCLC had significantly reduced nAb titers after 4-6 months of vaccination. Our data highlight the importance of COVID-19 bivalent booster vaccination as the standard of care for patients with NSCLC given the evolution of new variants of concern.

2.
J Am Soc Mass Spectrom ; 34(7): 1272-1282, 2023 Jul 05.
Article En | MEDLINE | ID: mdl-37317808

This paper describes the development and initial results from a secondary ion mass spectrometer coupled with microscope mode detection. Stigmatic ion microscope imaging enables us to decouple the primary ion (PI) beam focus from spatial resolution and is a promising route to attaining higher throughput for mass spectrometry imaging (MSI). Using a commercial C60+ PI beam source, we can defocus the PI beam to give uniform intensity across a 2.5 mm2 area. By coupling the beam with a position-sensitive spatial detector, we can achieve mass spectral imaging of positive and negative secondary ions (SIs), which we demonstrate using samples comprising metals and dyes. Our approach involves simultaneous desorption of ions across a large field of view, enabling mass spectral images to be recorded over an area of 2.5 mm2 in a matter of seconds. Our instrument can distinguish spatial features with a resolution of better than 20 µm, and has a mass resolution of >500 at 500 u. There is considerable scope to improve this, and through simulations we estimate the future performance of the instrument.

3.
J Clin Oncol ; 40(33): 3808-3816, 2022 11 20.
Article En | MEDLINE | ID: mdl-35759727

PURPOSE: To examine COVID-19 mRNA vaccine-induced binding and neutralizing antibody responses in patients with non-small-cell lung cancer (NSCLC) to SARS-CoV-2 614D (wild type [WT]) strain and variants of concern after the primary 2-dose and booster vaccination. METHODS: Eighty-two patients with NSCLC and 53 healthy volunteers who received SARS-CoV-2 mRNA vaccines were included in the study. Blood was collected longitudinally, and SARS-CoV-2-specific binding and neutralizing antibody responses were evaluated by Meso Scale Discovery assay and live virus Focus Reduction Neutralization Assay, respectively. RESULTS: A majority of patients with NSCLC generated binding and neutralizing antibody titers comparable with the healthy vaccinees after mRNA vaccination, but a subset of patients with NSCLC (25%) made poor responses, resulting in overall lower (six- to seven-fold) titers compared with the healthy cohort (P = < .0001). Although patients age > 70 years had lower immunoglobulin G titers (P = < .01), patients receiving programmed death-1 monotherapy, chemotherapy, or a combination of both did not have a significant impact on the antibody response. Neutralizing antibody titers to the B.1.617.2 (Delta), B.1.351 (Beta), and in particular, B.1.1.529 (Omicron) variants were significantly lower (P = < .0001) compared with the 614D (WT) strain. Booster vaccination led to a significant increase (P = .0001) in the binding and neutralizing antibody titers to the WT and Omicron variant. However, 2-4 months after the booster, we observed a five- to seven-fold decrease in neutralizing titers to WT and Omicron viruses. CONCLUSION: A subset of patients with NSCLC responded poorly to the SARS-CoV-2 mRNA vaccination and had low neutralizing antibodies to the B.1.1.529 Omicron variant. Booster vaccination increased binding and neutralizing antibody titers to Omicron, but antibody titers declined after 3 months. These data highlight the concern for patients with cancer given the rapid spread of SARS-CoV-2 Omicron variant.


COVID-19 , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Aged , COVID-19 Vaccines , Antibody Formation , SARS-CoV-2 , Carcinoma, Non-Small-Cell Lung/therapy , Lung Neoplasms/therapy , COVID-19/prevention & control , Antibodies, Viral , Immunization , Vaccination , Antibodies, Neutralizing , RNA, Messenger , mRNA Vaccines
4.
medRxiv ; 2022 Jan 23.
Article En | MEDLINE | ID: mdl-35018383

PURPOSE: We investigated SARS-CoV-2 mRNA vaccine-induced binding and live-virus neutralizing antibody response in NSCLC patients to the SARS-CoV-2 wild type strain and the emerging Delta and Omicron variants. METHODS: 82 NSCLC patients and 53 healthy adult volunteers who received SARS-CoV-2 mRNA vaccines were included in the study. Blood was collected longitudinally, and SARS-CoV-2-specific binding and live-virus neutralization response to 614D (WT), B.1.617.2 (Delta), B.1.351 (Beta) and B.1.1.529 (Omicron) variants were evaluated by Meso Scale Discovery (MSD) assay and Focus Reduction Neutralization Assay (FRNT) respectively. We determined the longevity and persistence of vaccine-induced antibody response in NSCLC patients. The effect of vaccine-type, age, gender, race and cancer therapy on the antibody response was evaluated. RESULTS: Binding antibody titer to the mRNA vaccines were lower in the NSCLC patients compared to the healthy volunteers (P=<0.0001). More importantly, NSCLC patients had reduced live-virus neutralizing activity compared to the healthy vaccinees (P=<0.0001). Spike and RBD-specific binding IgG titers peaked after a week following the second vaccine dose and declined after six months (P=<0.001). While patients >70 years had lower IgG titers (P=<0.01), patients receiving either PD-1 monotherapy, chemotherapy or a combination of both did not have a significant impact on the antibody response. Binding antibody titers to the Delta and Beta variants were lower compared to the WT strain (P=<0.0001). Importantly, we observed significantly lower FRNT50 titers to Delta (6-fold), and Omicron (79-fold) variants (P=<0.0001) in NSCLC patients. CONCLUSIONS: Binding and live-virus neutralizing antibody titers to SARS-CoV-2 mRNA vaccines in NSCLC patients were lower than the healthy vaccinees, with significantly lower live-virus neutralization of B.1.617.2 (Delta), and more importantly, the B.1.1.529 (Omicron) variant compared to the wild-type strain. These data highlight the concern for cancer patients given the rapid spread of SARS-CoV-2 Omicron variant.

5.
Anal Chim Acta ; 1051: 110-119, 2019 Mar 21.
Article En | MEDLINE | ID: mdl-30661607

Matrix assisted laser desorption ionisation mass spectrometry (MALDI-MS) at atmospheric pressure (AP) is, with a few notable exceptions, overshadowed by its vacuum based forms and AP transmission mode (TM) MALDI-MS lacks the up-take its potential benefits might suggest. The reasons for this are not fully understood and it is clear further development is required to realise the flexibility and power of this ionisation method and geometry. Here we report the build of a new AP-TM-MALDI-MSI ion source with plasma ionisation enhancement. This novel ion source is used to analyse a selection of increasingly complex systems from molecular standards to murine brain tissue sections. Significant enhancement of detected ion intensity is observed in both positive and negative ion mode in all systems, with up to 2000 fold increases observed for a range of tissue endogenous species. The substantial improvements conferred by the plasma enhancement are then employed to demonstrate the acquisition of proof of concept tissue images, with high quality spectra obtained down to 10 × 10 µm pixel size.


Atmospheric Pressure , Plasma Gases/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Brain Chemistry , Equipment Design , Mice , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation
6.
Anal Bioanal Chem ; 411(1): 217-229, 2019 Jan.
Article En | MEDLINE | ID: mdl-30402675

Biomedical devices are complex products requiring numerous assembly steps along the industrial process chain, which can carry the potential of surface contamination. Cleanliness has to be analytically assessed with respect to ensuring safety and efficacy. Although several analytical techniques are routinely employed for such evaluation, a reliable analysis chain that guarantees metrological traceability and quantification capability is desirable. This calls for analytical tools that are cascaded in a sensible way to immediately identify and localize possible contamination, both qualitatively and quantitatively. In this systematic inter-comparative approach, we produced and characterized sodium dodecyl sulfate (SDS) films mimicking contamination on inorganic and organic substrates, with potential use as reference materials for ambient techniques, i.e., ambient mass spectrometry (AMS), infrared and Raman spectroscopy, to reliably determine amounts of contamination. Non-invasive and complementary vibrational spectroscopy techniques offer a priori chemical identification with integrated chemical imaging tools to follow the contaminant distribution, even on devices with complex geometry. AMS also provides fingerprint outputs for a fast qualitative identification of surface contaminations to be used at the end of the traceability chain due to its ablative effect on the sample. To absolutely determine the mass of SDS, the vacuum-based reference-free technique X-ray fluorescence was employed for calibration. Convex hip liners were deliberately contaminated with SDS to emulate real biomedical devices with an industrially relevant substance. Implementation of the aforementioned analytical techniques is discussed with respect to combining multimodal technical setups to decrease uncertainties that may arise if a single technique approach is adopted. Graphical abstract ᅟ.


Sodium Dodecyl Sulfate/analysis , Spectrum Analysis/methods , Vacuum , Humans , Reference Standards , Sodium Dodecyl Sulfate/standards , Surface Properties
7.
J Pharm Biomed Anal ; 150: 308-317, 2018 Feb 20.
Article En | MEDLINE | ID: mdl-29272815

There is a strong need in the medical device industry to decrease failure rates of biomedical devices by reducing the incidence of defect structures and contaminants during the production process. The detection and identification of defect structures and contaminants is crucial for many industrial applications. The present study exploits reference-free X-ray fluorescence (XRF) analysis as an analytical tool for the traceable characterization of surface contaminants of medical devices, in particular N,N'-ethylene-bis (stearamide), an ubiquitous compound used in many industrial applications as a release agent or friction reduction additive. Reference-free XRF analysis as primary method has been proven to be capable of underpinning all other applied methods since it yields the absolute mass deposition of the selected N,N'-ethylene-bis (stearamide) contaminant whilst X-ray absorption fine structure analysis determines the chemical species. Ambient vibrational spectroscopy and mass spectroscopy methodologies such as Fourier transform infrared, Raman, and secondary ion mass spectroscopy have been used in this systematic procedure providing an extensive range of complementary analyses. The calibration procedure described in this paper was developed using specially designed and fabricated model systems varying in thickness and substrate material. Furthermore, typical real medical devices such as both a polyethylene hip liner and a silver-coated wound dressing have been contaminated and investigated by these diverse methods, enabling testing of this developed procedure. These well-characterized samples may be used as calibration standards for bench top instrumentation from the perspective of providing traceable analysis of biomaterials and surface treatments. These findings demonstrate the potential importance and usefulness of combining complementary methods for a better understanding of the relevant organic materials.


Equipment Contamination , Equipment and Supplies , Spectrometry, X-Ray Emission/standards , Stearic Acids/analysis , Calibration , Reference Standards , Reproducibility of Results , Spectrometry, Mass, Secondary Ion , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman
9.
Langmuir ; 31(6): 1921-30, 2015 Feb 17.
Article En | MEDLINE | ID: mdl-25650821

We describe the development of a reference biosensor surface, based upon a binary mixture of oligo-ethylene glycol thiols, one of which has biotin at the terminus, adsorbed onto gold as self-assembled monolayers (SAMs). These surfaces were analyzed in detail by X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS) to establish the relationship between the thiol solution composition and the surface composition and structure. We report the use of argon cluster primary ions for the analysis of PEG-thiols, establishing that the different thiols are intimately mixed and that SIMS may be used to measure surface composition of thiol SAMs on gold with a detection limit better than 1% fractional coverage. The adsorption of neutralized chimeric avidin to these surfaces was measured simultaneously using ellipsometry and QCM-D. Comparison of the two measurements demonstrates the expected nonlinearity of the frequency response of the QCM but also reveals a strong variation in the dissipation signal that correlates with the surface density of biotin. These variations are most likely due to the difference in mechanical response of neutralized chimeric avidin bound by just one biotin moiety at low biotin density and two biotin moieties at high density. The transition between the two modes of binding occurs when the average spacing of biotin ligands approaches the diameter of the avidin molecule.


Avidin/chemistry , Biosensing Techniques/methods , Recombinant Fusion Proteins/chemistry , Adsorption , Binding Sites , Limit of Detection , Models, Molecular , Polyethylene Glycols/chemistry , Protein Stability , Protein Structure, Secondary , Sulfhydryl Compounds/chemistry , Surface Properties , Temperature
10.
Anal Chem ; 86(19): 9603-11, 2014 Oct 07.
Article En | MEDLINE | ID: mdl-25208328

A VAMAS (Versailles Project on Advanced Materials and Standards) interlaboratory study for desorption electrospray ionization mass spectrometry (DESI MS) measurements has been conducted with the involvement of 20 laboratories from 10 countries. Participants were provided with an analytical protocol and two reference samples: a thin layer of Rhodamine B and double-sided adhesive tape, each on separate glass slides. The studies comprised acquisition of positive ion mass spectra in predetermined m/z ranges. No sample preparation was required. Results for Rhodamine B show that very consistent craters may be generated. However, inadequacies of the spray and sample stage designs often lead to variable crater shapes. The average repeatability for Rhodamine B is 50%. Yet, repeatabilities better than 20% can be achieved. Rhodamine B proved to be an excellent reference sample to check the sample erosion crater, the sample stage movement and memory effects. Adhesive tape samples show that their average absolute intensity repeatability is 30% and the relative repeatability is 9%. The constancy of these spectra from relative intensities gives day-to-day average relative repeatabilities of 31%, three times worse than the short-term repeatability. Significant differences in the spectra from different laboratories arise from the different adventitious adducts observed or from contaminants that may cause the higher day-to-day variations. It is thought that this may be overcome by allowing some 20 ppb of sodium to be always present in the solvent, to be the dominating adduct. Repeatabilities better than 5% may be achieved with adequate control.

11.
Analyst ; 136(16): 3274-80, 2011 Aug 21.
Article En | MEDLINE | ID: mdl-21750803

Two ambient ionisation techniques, desorption electrospray ionisation (DESI) and plasma assisted desorption ionisation (PADI), have been used to analyse personal care products (PCPs) on fixed fibroblast cell surfaces. The similarities and differences between the two techniques for this type of analysis have been explored in various ways. Here, we show the results of DESI and PADI analysis of individual PCP ingredients as well as the analysis of these as complex creams on model skin surfaces, with minimal sample preparation. Typically, organosiloxanes and small molecules were detected from the creams. A study of the morphological damage of the fibroblast cells by the two ionisation techniques showed that for a less than 10% reduction in cell number, acquisition times should be limited to 5 s for PADI, which gives good signal levels; with DESI, the morphological damage was negligible. The operating parameters for the plasma source were optimised, and it was also found that the parameters could be modified to vary the relative intensity of different ions in the mass spectrum.


Cosmetics/analysis , Skin/chemistry , Spectrometry, Mass, Electrospray Ionization , Fibroblasts/chemistry , Fibroblasts/cytology , Humans , Models, Biological
12.
Anal Chem ; 83(10): 3627-31, 2011 May 15.
Article En | MEDLINE | ID: mdl-21495627

In recent years, there has been an increase in the use of time-of-flight secondary ion mass spectrometry (TOF-SIMS) for characterizing material surfaces. A great advantage of SIMS is that the analysis is direct and has excellent spatial resolution approaching a few hundred nanometers. However, the lack of the usual separation methods in mass spectrometry such as chromatography or ion mobility combined with the complexity of the heavily fragmented ions in the spectra means that the interpretation of multicomponent spectra in SIMS is very challenging indeed. The requirements for high-definition imaging, with say 256 × 256 pixels, in around 10 min analysis time places significant constraints on the instrument design so that separation using methods such as ion mobility with flight times of milliseconds are incompatible. Clearly, traditional liquid and gas chromatographies are not at all possible. Previously, we developed a method known as Gentle-SIMS (G-SIMS) that simplifies SIMS spectra so that the dominant ions are simply related to the structure of the substances analyzed. The method uses a measurement of the fragmentation behavior under two different primary ion source conditions and a control parameter known as the g-index. Here, we show that this method may be used "chromatographically" to separate the mass spectra of a drug molecule from the matrix polymer. The method may be used in real-time and is directly compatible with the majority of TOF-SIMS instruments. The applicability to other imaging mass spectrometeries is discussed.


Pharmaceutical Preparations/chemistry , Polymers/chemistry , Spectrometry, Mass, Secondary Ion/methods , Bupivacaine/chemistry , Bupivacaine/isolation & purification , Codeine/chemistry , Codeine/isolation & purification , Lactic Acid/chemistry , Pharmaceutical Preparations/isolation & purification , Polyesters
13.
J Am Soc Mass Spectrom ; 21(3): 370-7, 2010 Mar.
Article En | MEDLINE | ID: mdl-19963399

Measurements are described to evaluate the constitution of secondary ion mass spectra for both monatomic and cluster primary ions. Previous work shows that spectra for different primary ions may be accurately described as the product of three material-dependent component spectra, two being raised to increasing powers as the cluster size increases. That work was for an organic material and, here, this is extended to (SiO(2))(t)OH(-) clusters from silicon oxide sputtered by 25 keV Bi(n)(+) cluster primary ions for n = 1, 3, and 5 and 1 < or = t < or = 15. These results are described to a standard deviation of 2.4% over 6 decades of intensity by the product of a constant with a spectrum, H(SiOH)*, and a power law spectrum in t. This evaluation is extended, using published data for Si(t)(+) sputtered from Si by 9 and 18 keV Au(-) and Au(3)(-), with confirmation that the spectra are closely described by the product of a constant with a spectrum, H(Si)*, and a simple spectrum that is an exponential dependence on t, both being raised to appropriate powers. This is confirmed with further published data for 6, 9, 12, and 18 keV Al(-) and Al(2)(-) primary cluster ions. In all cases, the major effect of intensity is then related to the deposited energy of the primary ion at the surface. The constitution of SIMS spectra, for monatomic and cluster primary ion sources, is shown, in all cases, to be consistent with the product of a constant with two component spectra raised to given powers.

14.
Rapid Commun Mass Spectrom ; 23(5): 599-602, 2009 Mar.
Article En | MEDLINE | ID: mdl-19160352

An analysis is made of the characteristics of monatomic primary ion sources to generate G-SIMS (gentle SIMS) spectra. In previous studies, this is resolved into the parameter beta that describes the relative intensities of ions in the series C(n)H(n+2-i) as i changes. For this, data from polystyrene are most extensive. It is found that the experimental beta values, which relate to the emitted secondary ion fragment surface plasma temperatures, are accurately described by an empirical fit involving the ratio of the sputtering yield and the mass of the primary ion. This description covers data for Ar(+), Bi(+), Cs(+), Ga(+), Mn(+) and Xe(+) monatomic primary ions with energies in the range 4 to 25 keV, placing them in a coherent framework, and permits the performance of any other monatomic primary ion to be predicted. This shows that, of all monatomic primary ions, Bi will yield the highest beta values and Mn the lowest. Since the G-SIMS spectra are ratios, a ratio involving spectra using these primary ions gives the maximum signal quality possible and these are therefore recommended for use. The previous choice of these ions for a combined G-SIMS source, based on practical considerations, is thus shown to be optimum.

15.
Rapid Commun Mass Spectrom ; 22(24): 4178-82, 2008 Dec.
Article En | MEDLINE | ID: mdl-19039819

The use of cluster ion beam sputtering for depth profiling organic materials is of growing technological importance and is a very active area of research. At the 44th IUVSTA Workshop on "Sputtering and Ion Emission by Cluster Ion Beams", recent results were presented of a cluster ion beam depth profile of a thin organic molecular layer on a silicon wafer substrate. Those data showed that the intensity of molecular secondary ions is observed to increase at the interface and this was explained in terms of the higher stopping power in the substrate and a consequently higher sputtering yield and even higher secondary ion molecular sputtering yield. An alternative hypothesis was postulated in the workshop discussion which may be paraphrased as: "under primary ion bombardment of an organic layer, mobile ions such as sodium may migrate to the interface with the inorganic substrate and this enhancement of the sodium concentration increases the ionisation probability, so increasing the molecular ion yield observed at the interface". It is important to understand if measurement artefacts occur at interfaces for quantification as these are of great technological relevance - for example, the concentration of drug in a drug delivery system. Here, we evaluate the above hypothesis using a sample that exhibits regions of high and low sodium concentration at both the organic surface and the interface with the silicon wafer substrate. There is no evidence to support the hypothesis that the probability of molecular secondary ion ionisation is related to the sodium concentration at these levels.


Organic Chemicals/chemistry , Sodium Compounds/chemistry , Spectrometry, Mass, Secondary Ion/methods , Antioxidants/chemistry , Butylated Hydroxytoluene/analogs & derivatives , Butylated Hydroxytoluene/chemistry , Ions , Organic Chemicals/analysis
16.
Rapid Commun Mass Spectrom ; 22(16): 2602-8, 2008 Aug.
Article En | MEDLINE | ID: mdl-18655206

G-SIMS (gentle-SIMS) is a powerful method that considerably simplifies complex static secondary ion mass spectrometry (SSIMS) analysis of organics at surfaces. G-SIMS uses two primary ion beams that generate high and low fragmentation conditions at the surface. This allows an extrapolation to equivalent experimental conditions with very low fragmentation. Consequently, the spectra are less complex, contain more structural information and are simpler to interpret. In general, G-SIMS spectra more closely resemble electron ionisation mass spectra than SSIMS spectra. A barrier for the wider uptake of G-SIMS is the requirement for two ion beams producing suitably different fragmentation conditions and the need for their spatial registration (spatial alignment) at the surface, which is especially important for heterogeneous samples. The most popular source is the liquid metal ion source (LMIS), which is now sold with almost every new time-of-flight (TOF)-SIMS instrument. Here, we have developed a novel bismuth-manganese emitter (the 'G-tip') for the popular LMISs. This simplifies the alignment and gives excellent G-SIMS imaging and spectroscopy without significantly compromising the bismuth cluster ion beam performance.

17.
J Phys Chem B ; 112(9): 2596-605, 2008 Mar 06.
Article En | MEDLINE | ID: mdl-18254619

Alternating layers of two different organic materials, Irganox1010 and Irganox3114, have been created using vapor deposition. The layers of Irganox3114 were very thin ( approximately 2.5 nm) in comparison to the layers of Irganox1010 ( approximately 55 or approximately 90 nm) to create an organic equivalent of the inorganic 'delta-layers' commonly employed as reference materials in dynamic secondary ion mass spectrometry. Both materials have identical sputtering yields, and we show that organic delta layers may be used to determine some of the important metrological parameters for cluster ion beam depth profiling. We demonstrate, using a C(60) ion source, that the sputtering yield, S, diminishes with ion dose and that the depth resolution also degrades. By comparison with atomic force microscopy data for films of pure Irganox1010, we show that the degradation in depth resolution is caused by the development of topography. Secondary ion intensities are a well-behaved function of sputtering yield and may be employed to obtain useful analytical information. Fragments characteristic of highly damaged material have intensity proportional to S, and those fragments with minimal molecular rearrangment exhibit intensities proportional to S(2). We demonstrate quantitative analysis of the amount of substance in buried layers of a few nanometer thickness with an accuracy of approximately 10%. Organic delta layers are valuable reference materials for comparing the capabilities of different cluster ion sources and experimental arrangements for the depth profiling of organic materials.

...