Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(21)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37958979

RESUMEN

Bacterial contamination during space missions is problematic for human health and damages filters and other vital support systems. Staphylococcus aureus is both a human commensal and an opportunistic pathogen that colonizes human tissues and causes acute and chronic infections. Virulence and colonization factors are positively and negatively regulated, respectively, by bacterial cell-to-cell communication (quorum sensing) via the agr (accessory gene regulator) system. When cultured under low-shear modelled microgravity conditions (LSMMG), S. aureus has been reported to maintain a colonization rather than a pathogenic phenotype. Here, we show that the modulation of agr expression via reduced production of autoinducing peptide (AIP) signal molecules was responsible for this behavior. In an LSMMG environment, the S. aureus strains JE2 (methicillin-resistant) and SH1000 (methicillin-sensitive) both exhibited reduced cytotoxicity towards the human leukemia monocytic cell line (THP-1) and increased fibronectin binding. Using S. aureus agrP3::lux reporter gene fusions and mass spectrometry to quantify the AIP concentrations, the activation of agr, which depends on the binding of AIP to the transcriptional regulator AgrC, was delayed in the strains with an intact autoinducible agr system. This was because AIP production was reduced under these growth conditions compared with the ground controls. Under LSMMG, S. aureus agrP3::lux reporter strains that cannot produce endogenous AIPs still responded to exogenous AIPs. Provision of exogenous AIPs to S. aureus USA300 during microgravity culture restored the cytotoxicity of culture supernatants for the THP-1 cells. These data suggest that microgravity does not affect AgrC-AIP interactions but more likely the generation of AIPs.


Asunto(s)
Infecciones Estafilocócicas , Ingravidez , Humanos , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Staphylococcus aureus/metabolismo , Proteínas Quinasas/metabolismo , Percepción de Quorum/genética , Regulación hacia Abajo , Péptidos/metabolismo , Proteínas Bacterianas/metabolismo
3.
Biomicrofluidics ; 15(2): 021501, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33791050

RESUMEN

Respiratory viral infections are leading causes of death worldwide. A number of human respiratory viruses circulate in all age groups and adapt to person-to-person transmission. It is vital to understand how these viruses infect the host and how the host responds to prevent infection and onset of disease. Although animal models have been widely used to study disease states, incisive arguments related to poor prediction of patient responses have led to the development of microfluidic organ-on-chip models, which aim to recapitulate organ-level physiology. Over the past decade, human lung chips have been shown to mimic many aspects of the lung function and its complex microenvironment. In this review, we address immunological responses to viral infections and elaborate on human lung airway and alveolus chips reported to model respiratory viral infections and therapeutic interventions. Advances in the field will expedite the development of therapeutics and vaccines for human welfare.

4.
Life (Basel) ; 11(2)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540536

RESUMEN

Immune dysfunction has long been reported by medical professionals regarding astronauts suffering from opportunistic infections both during their time in space and a short period afterwards once back on Earth. Various species of prokaryotes onboard these space missions or cultured in a microgravity analogue exhibit increased virulence, enhanced formation of biofilms, and in some cases develop specific resistance for specific antibiotics. This poses a substantial health hazard to the astronauts confined in constant proximity to any present bacterial pathogens on long space missions with a finite number of resources including antibiotics. Furthermore, some bacteria cultured in microgravity develop phenotypes not seen in Earth gravity conditions, providing novel insights into bacterial evolution and avenues for research. Immune dysfunction caused by exposure to microgravity may increase the chance of bacterial infection. Immune cell stimulation, toll-like receptors and pathogen-associated molecular patterns can all be altered in microgravity and affect immunological crosstalk and response. Production of interleukins and other cytokines can also be altered leading to immune dysfunction when responding to bacterial infection. Stem cell differentiation and immune cell activation and proliferation can also be impaired and altered by the microgravity environment once more adding to immune dysfunction in microgravity. This review elaborates on and contextualises these findings relating to how bacteria can adapt to microgravity and how the immune system subsequently responds to infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...