Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Int J Mol Sci ; 25(11)2024 May 30.
Article En | MEDLINE | ID: mdl-38892228

Primary sclerosing cholangitis (PSC) is a rare, progressive disease, characterized by inflammation and fibrosis of the bile ducts, lacking reliable prognostic biomarkers for disease activity. Machine learning applied to broad proteomic profiling of sera allowed for the discovery of markers of disease presence, severity, and cirrhosis and the exploration of the involvement of CCL24, a chemokine with fibro-inflammatory activity. Sera from 30 healthy controls and 45 PSC patients were profiled with proximity extension assay, quantifying the expression of 2870 proteins, and used to train an elastic net model. Proteins that contributed most to the model were tested for correlation to enhanced liver fibrosis (ELF) score and used to perform pathway analysis. Statistical modeling for the presence of cirrhosis was performed with principal component analysis (PCA), and receiver operating characteristics (ROC) curves were used to assess the useability of potential biomarkers. The model successfully predicted the presence of PSC, where the top-ranked proteins were associated with cell adhesion, immune response, and inflammation, and each had an area under receiver operator characteristic (AUROC) curve greater than 0.9 for disease presence and greater than 0.8 for ELF score. Pathway analysis showed enrichment for functions associated with PSC, overlapping with pathways enriched in patients with high levels of CCL24. Patients with cirrhosis showed higher levels of CCL24. This data-driven approach to characterize PSC and its severity highlights potential serum protein biomarkers and the importance of CCL24 in the disease, implying its therapeutic potential in PSC.


Biomarkers , Chemokine CCL24 , Cholangitis, Sclerosing , Disease Progression , Liver Cirrhosis , Machine Learning , Humans , Cholangitis, Sclerosing/blood , Cholangitis, Sclerosing/metabolism , Male , Female , Liver Cirrhosis/blood , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Biomarkers/blood , Middle Aged , Chemokine CCL24/metabolism , Chemokine CCL24/blood , Adult , ROC Curve , Proteomics/methods , Case-Control Studies
2.
Cells ; 13(3)2024 Jan 23.
Article En | MEDLINE | ID: mdl-38334601

Primary sclerosing cholangitis (PSC) is an inflammatory and fibrotic biliary disease lacking approved treatment. We studied CCL24, a chemokine shown to be overexpressed in damaged bile ducts, and its involvement in key disease-related mechanisms. Serum proteomics of PSC patients and healthy controls (HC) were analyzed using the Olink® proximity extension assay and compared based on disease presence, fibrosis severity, and CCL24 levels. Disease-related canonical pathways, upstream regulators, and toxicity functions were elevated in PSC patients compared to HC and further elevated in patients with high CCL24 levels. In vitro, a protein signature in CCL24-treated hepatic stellate cells (HSCs) differentiated patients by disease severity. In mice, CCL24 intraperitoneal injection selectively recruited neutrophils and monocytes. Treatment with CM-101, a CCL24-neutralizing antibody, in an α-naphthylisothiocyanate (ANIT)-induced cholestasis mouse model effectively inhibited accumulation of peribiliary neutrophils and macrophages while reducing biliary hyperplasia and fibrosis. Furthermore, in PSC patients, CCL24 levels were correlated with upregulation of monocyte and neutrophil chemotaxis pathways. Collectively, these findings highlight the distinct role of CCL24 in PSC, influencing disease-related mechanisms, affecting immune cells trafficking and HSC activation. Its blockade with CM-101 reduces inflammation and fibrosis and positions CCL24 as a promising therapeutic target in PSC.


Cholangitis, Sclerosing , Cholestasis , Humans , Mice , Animals , Cholangitis, Sclerosing/metabolism , Proteomics , Bile Ducts/metabolism , Fibrosis , Chemokine CCL24
3.
JCI Insight ; 8(12)2023 06 22.
Article En | MEDLINE | ID: mdl-37345655

ˆCCL24 is a pro-fibrotic, pro-inflammatory chemokine expressed in several chronic fibrotic diseases. In the liver, CCL24 plays a role in fibrosis and inflammation, and blocking CCL24 led to reduced liver injury in experimental models. We studied the role of CCL24 in primary sclerosing cholangitis (PSC) and evaluated the potential therapeutic effect of blocking CCL24 in this disease. Multidrug resistance gene 2-knockout (Mdr2-/-) mice demonstrated CCL24 expression in liver macrophages and were used as a relevant experimental PSC model. CCL24-neutralizing monoclonal antibody, CM-101, significantly improved inflammation, fibrosis, and cholestasis-related markers in the biliary area. Moreover, using spatial transcriptomics, we observed reduced proliferation and senescence of cholangiocytes following CCL24 neutralization. Next, we demonstrated that CCL24 expression was elevated under pro-fibrotic conditions in primary human cholangiocytes and macrophages, and it induced proliferation of primary human hepatic stellate cells and cholangiocytes, which was attenuated following CCL24 inhibition. Correspondingly, CCL24 was found to be highly expressed in liver biopsies of patients with PSC. CCL24 serum levels correlated with Enhanced Liver Fibrosis score, most notably in patients with high alkaline phosphatase levels. These results suggest that blocking CCL24 may have a therapeutic effect in patients with PSC by reducing liver inflammation, fibrosis, and cholestasis.


Chemokine CCL24 , Cholangitis, Sclerosing , Cholestasis , Animals , Humans , Mice , Cholangitis, Sclerosing/complications , Fibrosis , Inflammation , Liver
4.
Int J Mol Sci ; 23(18)2022 Sep 15.
Article En | MEDLINE | ID: mdl-36142669

The ribonucleoprotein telomerase contains two essential components: telomerase RNA (TER) and telomerase reverse transcriptase (TERT, Est2 in yeast). A small portion of TER, termed the template, is copied by TERT onto the chromosome ends, thus compensating for sequence loss due to incomplete DNA replication and nuclease action. Although telomerase RNA is highly divergent in sequence and length across fungi and mammals, structural motifs essential for telomerase function are conserved. Here, we show that Est2 from the budding yeast Kluyveromyces lactis (klEst2) binds specifically to an essential three-way junction (TWJ) structure in K. lactis TER, which shares a conserved structure and sequence features with the essential CR4-CR5 domain of vertebrate telomerase RNA. klEst2 also binds specifically to the template domain, independently and mutually exclusive of its interaction with TWJ. Furthermore, we present the high-resolution structure of the klEst2 telomerase RNA-binding domain (klTRBD). Mutations introduced in vivo in klTRBD based on the solved structure or in TWJ based on its predicted RNA structure caused severe telomere shortening. These results demonstrate the conservation and importance of these domains and the multiple protein-RNA interactions between Est2 and TER for telomerase function.


Kluyveromyces , Telomerase , Animals , Base Sequence , Kluyveromyces/genetics , Kluyveromyces/metabolism , Mammals/metabolism , Nucleic Acid Conformation , RNA/metabolism , Telomerase/metabolism
5.
Mol Cancer Ther ; 20(5): 946-957, 2021 05.
Article En | MEDLINE | ID: mdl-33649103

Adoptive cell immunotherapy with chimeric antigen receptor (CAR) showed limited potency in solid tumors, despite durable remissions for hematopoietic malignancies. Therefore, an investigation of ways to enhance the efficacy of CARs' antitumor response has been engaged upon. We previously examined the interplay between the biophysical parameters of CAR binding (i.e., affinity, avidity, and antigen density), as regulators of CAR T-cell activity and detected nonmonotonic behaviors of affinity and antigen density and an interrelation between avidity and antigen density. Here, we built an evolving phenotypic model of CAR T-cell regulation, which suggested that receptor downmodulation is a key determinant of CAR T-cell function. We verified this assumption by measuring and manipulating receptor downmodulation and intracellular signaling processes. CAR downmodulation inhibition, via actin polymerization inhibition, but not inhibition of regulatory inhibitory phosphatases, was able to increase CAR T-cell responses. In addition, we documented trogocytosis in CAR T cells that depends on actin polymerization. In summary, our study modeled the parameters that govern CAR T-cell engagement and revealed an underappreciated mechanism of T-cell regulation. These results have a potential to predict and therefore advance the rational design of CAR T cells for adoptive cell treatments.See related article on p. 872.


Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/metabolism , Animals , Humans , Mice , Models, Theoretical , Phenotype
6.
Mol Cancer Ther ; 20(5): 872-884, 2021 05.
Article En | MEDLINE | ID: mdl-33649106

Chimeric antigen receptors (CARs) are immunoreceptors that redirect T cells to selectively kill tumor cells. Given their clinical successes in hematologic malignancies, there is a strong aspiration to advance this immunotherapy for solid cancers; hence, molecular CAR design and careful target choice are crucial for their function. To evaluate the functional significance of the biophysical properties of CAR binding (i.e., affinity, avidity, and antigen density), we generated an experimental system in which these properties are controllable. We constructed and characterized a series of CARs, which target the melanoma tumor-associated antigen Tyr/HLA-A2, and in which the affinity of the single-chain Fv binding domains ranged in KD from 4 to 400 nmol/L. These CARs were transduced into T cells, and each CAR T-cell population was sorted by the level of receptor expression. Finally, the various CAR T cells were encountered with target cells that present different levels of the target antigen. We detected nonmonotonic behaviors of affinity and antigen density, and an interrelation between avidity and antigen density. Antitumor activity measurements in vitro and in vivo corroborated these observations. Our study contributes to the understanding of CAR T-cell function and regulation, having the potential to improve therapies by the rational design of CAR T cells.See related article on p. 946.


Antigens, Neoplasm/metabolism , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Animals , Cell Line, Tumor , Female , Humans , Mice
7.
Front Neurosci ; 9: 53, 2015.
Article En | MEDLINE | ID: mdl-25788872

The intricate formation of the cerebral cortex requires a well-coordinated series of events, which are regulated at the level of cell-autonomous and non-cell autonomous mechanisms. Whereas cell-autonomous mechanisms that regulate cortical development are well-studied, the non-cell autonomous mechanisms remain poorly understood. A non-biased screen allowed us to identify Autotaxin (ATX) as a non-cell autonomous regulator of neural stem cells. ATX (also known as ENPP2) is best known to catalyze lysophosphatidic acid (LPA) production. Our results demonstrate that ATX affects the localization and adhesion of neuronal progenitors in a cell autonomous and non-cell autonomous manner, and strikingly, this activity is independent from its catalytic activity in producing LPA.

8.
Genes (Basel) ; 3(4): 759-78, 2012 Nov 21.
Article En | MEDLINE | ID: mdl-24705084

The way we study cortical development has undergone a revolution in the last few years following the ability to use shRNA in the developing brain of the rodent embryo. The first gene to be knocked-down in the developing brain was doublecortin (Dcx). Here we will review knockdown experiments in the developing brain and compare them with knockout experiments, thus highlighting the advantages and disadvantages using the different systems. Our review will focus on experiments relating to the doublecortin superfamily of proteins.

...