Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
R Soc Open Sci ; 10(6): 230539, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37351488

RESUMEN

We are at the cusp of a transition from 'learning from data' to 'learning what data to learn from' as a central focus of artificial intelligence (AI) research. While the first-order learning problem is not completely solved, large models under unified architectures, such as transformers, have shifted the learning bottleneck from how to effectively train models to how to effectively acquire and use task-relevant data. This problem, which we frame as exploration, is a universal aspect of learning in open-ended domains like the real world. Although the study of exploration in AI is largely limited to the field of reinforcement learning, we argue that exploration is essential to all learning systems, including supervised learning. We propose the problem of generalized exploration to conceptually unify exploration-driven learning between supervised learning and reinforcement learning, allowing us to highlight key similarities across learning settings and open research challenges. Importantly, generalized exploration is a necessary objective for maintaining open-ended learning processes, which in continually learning to discover and solve new problems, provides a promising path to more general intelligence.

2.
Nature ; 538(7626): 471-476, 2016 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-27732574

RESUMEN

Artificial neural networks are remarkably adept at sensory processing, sequence learning and reinforcement learning, but are limited in their ability to represent variables and data structures and to store data over long timescales, owing to the lack of an external memory. Here we introduce a machine learning model called a differentiable neural computer (DNC), which consists of a neural network that can read from and write to an external memory matrix, analogous to the random-access memory in a conventional computer. Like a conventional computer, it can use its memory to represent and manipulate complex data structures, but, like a neural network, it can learn to do so from data. When trained with supervised learning, we demonstrate that a DNC can successfully answer synthetic questions designed to emulate reasoning and inference problems in natural language. We show that it can learn tasks such as finding the shortest path between specified points and inferring the missing links in randomly generated graphs, and then generalize these tasks to specific graphs such as transport networks and family trees. When trained with reinforcement learning, a DNC can complete a moving blocks puzzle in which changing goals are specified by sequences of symbols. Taken together, our results demonstrate that DNCs have the capacity to solve complex, structured tasks that are inaccessible to neural networks without external read-write memory.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...