Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Immunother Cancer ; 11(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37399355

RESUMEN

BACKGROUND: We used a proliferating ligand (APRIL) to construct a ligand-based third generation chimeric antigen receptor (CAR) able to target two myeloma antigens, B-cell maturation antigen (BCMA) and transmembrane activator and CAML interactor. METHODS: The APRIL CAR was evaluated in a Phase 1 clinical trial (NCT03287804, AUTO2) in patients with relapsed, refractory multiple myeloma. Eleven patients received 13 doses, the first 15×106 CARs, and subsequent patients received 75,225,600 and 900×106 CARs in a 3+3 escalation design. RESULTS: The APRIL CAR was well tolerated. Five (45.5%) patients developed Grade 1 cytokine release syndrome and there was no neurotoxicity. However, responses were only observed in 45.5% patients (1×very good partial response, 3×partial response, 1×minimal response). Exploring the mechanistic basis for poor responses, we then compared the APRIL CAR to two other BCMA CARs in a series of in vitro assays, observing reduced interleukin-2 secretion and lack of sustained tumor control by APRIL CAR regardless of transduction method or co-stimulatory domain. There was also impaired interferon signaling of APRIL CAR and no evidence of autoactivation. Thus focusing on APRIL itself, we confirmed similar affinity to BCMA and protein stability in comparison to BCMA CAR binders but reduced binding by cell-expressed APRIL to soluble BCMA and reduced avidity to tumor cells. This indicated either suboptimal folding or stability of membrane-bound APRIL attenuating CAR activation. CONCLUSIONS: The APRIL CAR was well tolerated, but the clinical responses observed in AUTO2 were disappointing. Subsequently, when comparing the APRIL CAR to other BCMA CARs, we observed in vitro functional deficiencies due to reduced target binding by cell-expressed ligand.


Asunto(s)
Mieloma Múltiple , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia Adoptiva/métodos , Mieloma Múltiple/tratamiento farmacológico , Ligandos , Antígeno de Maduración de Linfocitos B/metabolismo , Antígeno de Maduración de Linfocitos B/uso terapéutico , Linfocitos T
2.
Mol Metab ; 28: 144-150, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31326351

RESUMEN

OBJECTIVE: Bariatric surgery acutely improves glucose control, an effect that is generally sustained for years in most patients. The acute postoperative glycemic reduction is at least partially mediated by enhanced incretin secretion and islet function, and occurs independent of caloric restriction, whereas the sustained improvement in glucose control is associated with increased insulin sensitivity. However, studies in humans with bariatric surgery suggest that these elevations are not static but undergo coordinated regulation throughout the postoperative time course. The studies described here test the hypothesis that incretin secretion, islet function, and peripheral insulin sensitivity undergo temporal regulation following bariatric surgery as a means to regulate glucose homeostasis. METHODS: Incretin secretion, islet function, and insulin sensitivity in mice with vertical sleeve gastrectomy (VSG) were compared to sham-operated controls that were pair-fed for 90d, matching food consumption and body-weight between groups. RESULTS: Glucose clearance and insulin secretion were enhanced in VSG mice compared to controls during mixed-meal tolerance tests (MMTT) at 12 and 80 days postoperatively, as were prandial GLP-1, GIP, and glucagon levels. Insulin sensitivity was comparable between groups 14d after surgery, but significantly greater in the VSG group at day 75, despite similar body-weight gain between groups. Glucose stimulated insulin secretion was greater in VSG mice compared to controls in vivo (I.P. glucose injection) and ex vivo (islet perifusion) indicating a rapid and sustained enhancement of ß-cell function after surgery. Notably, glycemia following a MMTT was progressively higher over time in the control animals but improved in the VSG mice at 80d despite weight regain. However, meal-stimulated incretin secretion decreased in VSG mice from 10 to 80 days postoperative, as did meal-stimulated and I.P. glucose-stimulated insulin secretion. This occurred over the same time period that insulin sensitivity was enhanced in VSG mice, suggesting postoperative islet output is tightly regulated by insulin demand. CONCLUSIONS: These data demonstrate a dynamic, multifactorial physiology for improved glucose control after VSG, whereby rapidly elevated insulin secretion is complimented by later enhancements in insulin sensitivity. Critically, the glucose lowering effect of VSG is demonstrably larger than that of caloric-restriction, suggesting these adaptations are mediated by surgical modification of gastrointestinal anatomy and not weight-loss per se.


Asunto(s)
Glucemia/metabolismo , Gastrectomía , Incretinas/metabolismo , Insulina/metabolismo , Plasticidad Neuronal , Animales , Calcio/metabolismo , Prueba de Tolerancia a la Glucosa , Resistencia a la Insulina , Ratones , Ratones Endogámicos C57BL
3.
J Biol Chem ; 294(12): 4656-4666, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30700550

RESUMEN

ß-Cell mitochondria play a central role in coupling glucose metabolism with insulin secretion. Here, we identified a metabolic function of cyclin-dependent kinase 1 (CDK1)/cyclin B1-the activation of mitochondrial respiratory complex I-that is active in quiescent adult ß-cells and hyperactive in ß-cells from obese (ob/ob) mice. In WT islets, respirometry revealed that 65% of complex I flux and 49% of state 3 respiration is sensitive to CDK1 inhibition. Islets from ob/ob mice expressed more cyclin B1 and exhibited a higher sensitivity to CDK1 blockade, which reduced complex I flux by 76% and state 3 respiration by 79%. The ensuing reduction in mitochondrial NADH utilization, measured with two-photon NAD(P)H fluorescence lifetime imaging (FLIM), was matched in the cytosol by a lag in citrate cycling, as shown with a FRET reporter targeted to ß-cells. Moreover, time-resolved measurements revealed that in ob/ob islets, where complex I flux dominates respiration, CDK1 inhibition is sufficient to restrict the duty cycle of ATP/ADP and calcium oscillations, the parameter that dynamically encodes ß-cell glucose sensing. Direct complex I inhibition with rotenone mimicked the restrictive effects of CDK1 inhibition on mitochondrial respiration, NADH turnover, ATP/ADP, and calcium influx. These findings identify complex I as a critical mediator of obesity-associated metabolic remodeling in ß-cells and implicate CDK1 as a regulator of complex I that enhances ß-cell glucose sensing.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Células Secretoras de Insulina/metabolismo , Mitocondrias/metabolismo , Obesidad/metabolismo , Transducción de Señal , Animales , Ciclo del Ácido Cítrico , Ciclina B1/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/enzimología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
4.
JCI Insight ; 4(6)2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30777938

RESUMEN

Bariatric surgeries including vertical sleeve gastrectomy (VSG) ameliorate obesity and diabetes. Weight loss and accompanying increases to insulin sensitivity contribute to improved glycemia after surgery; however, studies in humans also suggest weight-independent actions of bariatric procedures to lower blood glucose, possibly by improving insulin secretion. To evaluate this hypothesis, we compared VSG-operated mice with pair-fed, sham-surgical controls (PF-Sham) 2 weeks after surgery. This paradigm yielded similar postoperative body weight and insulin sensitivity between VSG and calorically restricted PF-Sham animals. However, VSG improved glucose tolerance and markedly enhanced insulin secretion during oral nutrient and i.p. glucose challenges compared with controls. Islets from VSG mice displayed a unique transcriptional signature enriched for genes involved in Ca2+ signaling and insulin secretion pathways. This finding suggests that bariatric surgery leads to intrinsic changes within the islet that alter function. Indeed, islets isolated from VSG mice had increased glucose-stimulated insulin secretion and a left-shifted glucose sensitivity curve compared with islets from PF-Sham mice. Isolated islets from VSG animals showed corresponding increases in the pulse duration of glucose-stimulated Ca2+ oscillations. Together, these findings demonstrate a weight-independent improvement in glycemic control following VSG, which is, in part, driven by improved insulin secretion and associated with substantial changes in islet gene expression. These results support a model in which ß cells play a key role in the adaptation to bariatric surgery and the improved glucose tolerance that is typical of these procedures.


Asunto(s)
Cirugía Bariátrica/métodos , Peso Corporal , Gastrectomía/métodos , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Animales , Glucemia , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Prueba de Tolerancia a la Glucosa , Humanos , Insulina/metabolismo , Resistencia a la Insulina , Ratones , Ratones Endogámicos C57BL , Obesidad , Pérdida de Peso
5.
Sci Rep ; 8(1): 17814, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30546031

RESUMEN

Type 2 diabetes is an age-and-obesity associated disease driven by impairments in glucose homeostasis that ultimately result in defective insulin secretion from pancreatic ß-cells. To deconvolve the effects of age and obesity in an experimental model of prediabetes, we fed young and aged mice either chow or a short-term high-fat/high-sucrose Western diet (WD) and examined how weight, glucose tolerance, and ß-cell function were affected. Although WD induced a similar degree of weight gain in young and aged mice, a high degree of heterogeneity was found exclusively in aged mice. Weight gain in WD-fed aged mice was well-correlated with glucose intolerance, fasting insulin, and in vivo glucose-stimulated insulin secretion, relationships that were not observed in young animals. Although ß-cell mass expansion in the WD-fed aged mice was only three-quarters of that observed in young mice, the islets from aged mice were resistant to the sharp WD-induced decline in ex vivo insulin secretion observed in young mice. Our findings demonstrate that age is associated with the protection of islet function in diet-induced obese mice, and furthermore, that WD challenge exposes variability in the resilience of the insulin secretory pathway in aged mice.


Asunto(s)
Envejecimiento/metabolismo , Dieta Occidental/efectos adversos , Intolerancia a la Glucosa/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Obesidad/metabolismo , Envejecimiento/patología , Animales , Intolerancia a la Glucosa/etiología , Intolerancia a la Glucosa/patología , Intolerancia a la Glucosa/prevención & control , Células Secretoras de Insulina/patología , Masculino , Ratones , Obesidad/etiología , Obesidad/patología , Obesidad/prevención & control
6.
Diabetes ; 66(8): 2163-2174, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28515126

RESUMEN

The noninvasive measurement of functional ß-cell mass would be clinically valuable for monitoring the progression of type 1 and type 2 diabetes as well as the viability of transplanted insulin-producing cells. Although previous work using MRI has shown promise for functional ß-cell mass determination through voltage-dependent Ca2+ channel (VDCC)-mediated internalization of Mn2+, the clinical utility of this technique is limited by the cytotoxic levels of the Mn2+ contrast agent. Here, we show that positron emission tomography (PET) is advantageous for determining functional ß-cell mass using 52Mn2+ (t1/2: 5.6 days). We investigated the whole-body distribution of 52Mn2+ in healthy adult mice by dynamic and static PET imaging. Pancreatic VDCC uptake of 52Mn2+ was successfully manipulated pharmacologically in vitro and in vivo using glucose, nifedipine (VDCC blocker), the sulfonylureas tolbutamide and glibenclamide (KATP channel blockers), and diazoxide (KATP channel opener). In a mouse model of streptozotocin-induced type 1 diabetes, 52Mn2+ uptake in the pancreas was distinguished from healthy controls in parallel with classic histological quantification of ß-cell mass from pancreatic sections. 52Mn2+-PET also reported the expected increase in functional ß-cell mass in the ob/ob model of pretype 2 diabetes, a result corroborated by histological ß-cell mass measurements and live-cell imaging of ß-cell Ca2+ oscillations. These results indicate that 52Mn2+-PET is a sensitive new tool for the noninvasive assessment of functional ß-cell mass.


Asunto(s)
Diabetes Mellitus Experimental/diagnóstico por imagen , Células Secretoras de Insulina/fisiología , Compuestos de Manganeso/farmacología , Tomografía de Emisión de Positrones/métodos , Radiofármacos/farmacología , Animales , Canales de Calcio/efectos de los fármacos , Estudios de Casos y Controles , Tamaño de la Célula , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Tipo 1/inducido químicamente , Diabetes Mellitus Tipo 1/diagnóstico por imagen , Progresión de la Enfermedad , Humanos , Células Secretoras de Insulina/citología , Ratones , Páncreas/citología , Páncreas/diagnóstico por imagen , Estreptozocina
7.
Diabetes ; 65(9): 2700-10, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27284112

RESUMEN

Aging is accompanied by impaired glucose homeostasis and an increased risk of type 2 diabetes, culminating in the failure of insulin secretion from pancreatic ß-cells. To investigate the effects of age on ß-cell metabolism, we established a novel assay to directly image islet metabolism with NAD(P)H fluorescence lifetime imaging (FLIM). We determined that impaired mitochondrial activity underlies an age-dependent loss of insulin secretion in human islets. NAD(P)H FLIM revealed a comparable decline in mitochondrial function in the pancreatic islets of aged mice (≥24 months), the result of 52% and 57% defects in flux through complex I and II, respectively, of the electron transport chain. However, insulin secretion and glucose tolerance are preserved in aged mouse islets by the heightened metabolic sensitivity of the ß-cell triggering pathway, an adaptation clearly encoded in the metabolic and Ca(2+) oscillations that trigger insulin release (Ca(2+) plateau fraction: young 0.211 ± 0.006, aged 0.380 ± 0.007, P < 0.0001). This enhanced sensitivity is driven by a reduction in KATP channel conductance (diazoxide: young 5.1 ± 0.2 nS; aged 3.5 ± 0.5 nS, P < 0.01), resulting in an ∼2.8 mmol/L left shift in the ß-cell glucose threshold. The results demonstrate how mice but not humans are able to successfully compensate for age-associated metabolic dysfunction by adjusting ß-cell glucose sensitivity and highlight an essential mechanism for ensuring the maintenance of insulin secretion.


Asunto(s)
Envejecimiento/metabolismo , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Mitocondrias/metabolismo , Canales de Potasio/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Electrofisiología , Glucosa/metabolismo , Humanos , Técnicas In Vitro , Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , NAD/metabolismo , NADP/metabolismo
8.
J Clin Invest ; 124(10): 4240-56, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25157818

RESUMEN

We previously positionally cloned Sorcs1 as a diabetes quantitative trait locus. Sorcs1 belongs to the Vacuolar protein sorting-10 (Vps10) gene family. In yeast, Vps10 transports enzymes from the trans-Golgi network (TGN) to the vacuole. Whole-body Sorcs1 KO mice, when made obese with the leptin(ob) mutation (ob/ob), developed diabetes. ß Cells from these mice had a severe deficiency of secretory granules (SGs) and insulin. Interestingly, a single secretagogue challenge failed to consistently elicit an insulin secretory dysfunction. However, multiple challenges of the Sorcs1 KO ob/ob islets consistently revealed an insulin secretion defect. The luminal domain of SORCS1 (Lum-Sorcs1), when expressed in a ß cell line, acted as a dominant-negative, leading to SG and insulin deficiency. Using syncollin-dsRed5TIMER adenovirus, we found that the loss of Sorcs1 function greatly impairs the rapid replenishment of SGs following secretagogue challenge. Chronic exposure of islets from lean Sorcs1 KO mice to high glucose and palmitate depleted insulin content and evoked an insulin secretion defect. Thus, in metabolically stressed mice, Sorcs1 is important for SG replenishment, and under chronic challenge by insulin secretagogues, loss of Sorcs1 leads to diabetes. Overexpression of full-length SORCS1 led to a 2-fold increase in SG content, suggesting that SORCS1 is sufficient to promote SG biogenesis.


Asunto(s)
Diabetes Mellitus/genética , Células Secretoras de Insulina/citología , Insulina/metabolismo , Receptores de Superficie Celular/genética , Vesículas Secretoras/metabolismo , Animales , Eliminación de Gen , Genotipo , Glucosa/química , Ratones , Ratones Noqueados , Ácido Palmítico/química , Estructura Terciaria de Proteína , Receptores de Superficie Celular/fisiología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
9.
J Biol Chem ; 289(36): 25276-86, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25002582

RESUMEN

The abundance and functional activity of proteins involved in the formation of the SNARE complex are tightly regulated for efficient exocytosis. Tomosyn proteins are negative regulators of exocytosis. Tomosyn causes an attenuation of insulin secretion by limiting the formation of the SNARE complex. We hypothesized that glucose-dependent stimulation of insulin secretion from ß-cells must involve reversing the inhibitory action of tomosyn. Here, we show that glucose increases tomosyn protein turnover. Within 1 h of exposure to 15 mM glucose, ~50% of tomosyn was degraded. The degradation of tomosyn in response to high glucose was blocked by inhibitors of the proteasomal pathway. Using (32)P labeling and mass spectrometry, we showed that tomosyn-2 is phosphorylated in response to high glucose, phorbol esters, and analogs of cAMP, all key insulin secretagogues. We identified 11 phosphorylation sites in tomosyn-2. Site-directed mutagenesis was used to generate phosphomimetic (Ser → Asp) and loss-of-function (Ser → Ala) mutants. The Ser → Asp mutant had enhanced protein turnover compared with the Ser → Ala mutant and wild type tomosyn-2. Additionally, the Ser → Asp tomosyn-2 mutant was ineffective at inhibiting insulin secretion. Using a proteomic screen for tomosyn-2-binding proteins, we identified Hrd-1, an E3-ubiquitin ligase. We showed that tomosyn-2 ubiquitination is increased by Hrd-1, and knockdown of Hrd-1 by short hairpin RNA resulted in increased abundance in tomosyn-2 protein levels. Taken together, our results reveal a mechanism by which enhanced phosphorylation of a negative regulator of secretion, tomosyn-2, in response to insulin secretagogues targets it to degradation by the Hrd-1 E3-ubiquitin ligase.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas R-SNARE/metabolismo , Serina/metabolismo , Proteínas Adaptadoras del Transporte Vesicular , Animales , Sitios de Unión/genética , Línea Celular Tumoral , Células Cultivadas , Glucosa/farmacología , Células HEK293 , Humanos , Immunoblotting , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Ratones , Modelos Moleculares , Mutación , Fosforilación/efectos de los fármacos , Unión Proteica , Estructura Terciaria de Proteína , Proteolisis/efectos de los fármacos , Proteínas R-SNARE/química , Proteínas R-SNARE/genética , Interferencia de ARN , Serina/química , Serina/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA