Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 68
1.
J Biomed Opt ; 29(Suppl 2): S22708, 2024 Jun.
Article En | MEDLINE | ID: mdl-38872791

Significance: The ability to observe and monitor cell density and morphology has been imperative for assessing the health of a cell culture and for producing high quality, high yield cell cultures for decades. Microcarrier-based cultures, used for large-scale cellular expansion processes, are not compatible with traditional visualization-based methods, such as widefield microscopy, due to their thickness and material composition. Aim: Here, we assess the optical imaging compatibilities of commercial polystyrene microcarriers versus custom-fabricated gelatin methacryloyl (gelMA) microcarriers for non-destructive and non-invasive visualization of the entire microcarrier surface, direct cell enumeration, and sub-cellular visualization of mesenchymal stem/stromal cells. Approach: Mie scattering and wavefront error simulations of the polystyrene and gelMA microcarriers were performed to assess the potential for elastic scattering-based imaging of adherent cells. A Zeiss Z.1 light-sheet microscope was adapted to perform light-sheet tomography using label-free elastic scattering contrast from planar side illumination to achieve optical sectioning and permit non-invasive and non-destructive, in toto, three-dimensional, high-resolution visualization of cells cultured on microcarriers. Results: The polystyrene microcarrier prevents visualization of cells on the distal half of the microcarrier using either fluorescence or elastic scattering contrast, whereas the gelMA microcarrier allows for high fidelity visualization of cell morphology and quantification of cell density using light-sheet fluorescence microscopy and tomography. Conclusions: The combination of optical-quality gelMA microcarriers and label-free light-sheet tomography will facilitate enhanced control of bioreactor-microcarrier cell culture processes.


Cell Adhesion , Hydrogels , Mesenchymal Stem Cells , Polystyrenes , Polystyrenes/chemistry , Mesenchymal Stem Cells/cytology , Hydrogels/chemistry , Cell Adhesion/physiology , Optical Imaging/methods , Optical Imaging/instrumentation , Humans , Gelatin/chemistry , Cell Culture Techniques/methods , Cell Culture Techniques/instrumentation , Cells, Cultured , Animals
2.
Front Mol Biosci ; 11: 1376091, 2024.
Article En | MEDLINE | ID: mdl-38606288

Collagen VI and collagen XII are structurally complex collagens of the extracellular matrix (ECM). Like all collagens, type VI and XII both possess triple-helical components that facilitate participation in the ECM network, but collagen VI and XII are distinct from the more abundant fibrillar collagens in that they also possess arrays of structurally globular modules with the capacity to propagate signaling to attached cells. Cell attachment to collagen VI and XII is known to regulate protective, proliferative or developmental processes through a variety of mechanisms, but a growing body of genetic and biochemical evidence suggests that at least some of these phenomena may be potentiated through mechanisms that require coordinated interaction between the two collagens. For example, genetic studies in humans have identified forms of myopathic Ehlers-Danlos syndrome with overlapping phenotypes that result from mutations in either collagen VI or XII, and biochemical and cell-based studies have identified accessory molecules that could form bridging interactions between the two collagens. However, the demonstration of a direct or ternary structural interaction between collagen VI or XII has not yet been reported. This Hypothesis and Theory review article examines the evidence that supports the existence of a functional complex between type VI and XII collagen in the ECM and discusses potential biological implications.

3.
Nat Commun ; 15(1): 3283, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38637507

While poly(ethylene glycol) (PEG) hydrogels are generally regarded as biologically inert blank slates, concerns over PEG immunogenicity are growing, and the implications for tissue engineering are unknown. Here, we investigate these implications by immunizing mice against PEG to stimulate anti-PEG antibody production and evaluating bone defect regeneration after treatment with bone morphogenetic protein-2-loaded PEG hydrogels. Quantitative analysis reveals that PEG sensitization increases bone formation compared to naive controls, whereas histological analysis shows that PEG sensitization induces an abnormally porous bone morphology at the defect site, particularly in males. Furthermore, immune cell recruitment is higher in PEG-sensitized mice administered the PEG-based treatment than their naive counterparts. Interestingly, naive controls that were administered a PEG-based treatment also develop anti-PEG antibodies. Sex differences in bone formation and immune cell recruitment are also apparent. Overall, these findings indicate that anti-PEG immune responses can impact tissue engineering efficacy and highlight the need for further investigation.


Biocompatible Materials , Tissue Engineering , Female , Male , Mice , Animals , Biocompatible Materials/pharmacology , Osteogenesis , Bone Regeneration , Polyethylene Glycols/pharmacology , Hydrogels/pharmacology
4.
Biomed Mater ; 19(3)2024 Mar 28.
Article En | MEDLINE | ID: mdl-38498949

Polycaprolactone (PCL) is a suitable material for bone repair due to good biocompatibility and mechanical properties. However, low bioactivity and hydrophobicity pose major challenges for its biomedical applications. To overcome these limitations, PCL-based scaffolds loaded with bioactive agents have been developed. Salicin (Sal) is an anti-inflammatory and analgesic herbal glycoside with osteogenic potential. In the present study, we aimed to produce a Sal-laden PCL (PCL-Sal) scaffold for bone healing applications. Three-dimensional scaffolds were produced and their biocompatibility, and physical-chemical characteristics were determined. The osteogenic potential of the PCL (PCL) and PCL-Sal scaffolds was evaluated using bone marrow mesenchymal stem cells (BMSCs). Scaffolds were implanted into a 5 mm bone defect created in the femur of adult rats, and the new bone fraction was determined using micro-computed tomography scanning at one-month follow-up. PCL-Sal scaffold had a structure, porosity, and fiber diameter suitable for bone construction. It also possessed a higher rate of hydrophilicity and bioactivity compared to the PCL, providing a suitable surface for the proliferation and bone differentiation of BMSCs. Furthermore, PCL-Sal scaffolds showed a higher capacity to scavenge free radicals compared to PCL. The improved bone healing potential of the PCL-Sal scaffold was also confirmed according toin vivoimplantation results. Our findings revealed that the Sal-laden implant could be considered for bone repair due to desirable characteristics of Sal such as hydrophilicity, surface modification for cell attachment, and antioxidant properties.


Benzyl Alcohols , Glucosides , Polyesters , Tissue Scaffolds , Rats , Animals , Tissue Scaffolds/chemistry , X-Ray Microtomography , Polyesters/chemistry , Osteogenesis , Femur , Printing, Three-Dimensional
5.
Cytotherapy ; 26(4): 372-382, 2024 04.
Article En | MEDLINE | ID: mdl-38363250

BACKGROUND AIMS: Human mesenchymal stromal cells (hMSCs) and their secreted products show great promise for treatment of musculoskeletal injury and inflammatory or immune diseases. However, the path to clinical utilization is hampered by donor-tissue variation and the inability to manufacture clinically relevant yields of cells or their products in a cost-effective manner. Previously we described a method to produce chemically and mechanically customizable gelatin methacryloyl (GelMA) microcarriers for culture of hMSCs. Herein, we demonstrate scalable GelMA microcarrier-mediated expansion of induced pluripotent stem cell (iPSC)-derived hMSCs (ihMSCs) in 500 mL and 3L vertical wheel bioreactors, offering several advantages over conventional microcarrier and monolayer-based expansion strategies. METHODS: Human mesenchymal stromal cells derived from induced pluripotent cells were cultured on custom-made spherical gelatin methacryloyl microcarriers in single-use vertical wheel bioreactors (PBS Biotech). Cell-laden microcarriers were visualized using confocal microscopy and elastic light scattering methodologies. Cells were assayed for viability and differentiation potential in vitro by standard methods. Osteogenic cell matrix derived from cells was tested in vitro for osteogenic healing using a rodent calvarial defect assay. Immune modulation was assayed with an in vivo peritonitis model using Zymozan A. RESULTS: The optical properties of GelMA microcarriers permit noninvasive visualization of cells with elastic light scattering modalities, and harvest of product is streamlined by microcarrier digestion. At volumes above 500 mL, the process is significantly more cost-effective than monolayer culture. Osteogenic cell matrix derived from ihMSCs expanded on GelMA microcarriers exhibited enhanced in vivo bone regenerative capacity when compared to bone morphogenic protein 2, and the ihMSCs exhibited superior immunosuppressive properties in vivo when compared to monolayer-generated ihMSCs. CONCLUSIONS: These results indicate that the cell expansion strategy described here represents a superior approach for efficient generation, monitoring and harvest of therapeutic MSCs and their products.


Cell Culture Techniques , Mesenchymal Stem Cells , Humans , Cell Culture Techniques/methods , Bioreactors , Osteogenesis , Bone Regeneration , Cell Proliferation , Cell Differentiation , Cells, Cultured
6.
Sci Adv ; 9(45): eadi2387, 2023 11 10.
Article En | MEDLINE | ID: mdl-37948519

Mesenchymal stem/stromal cells (MSCs) have been evaluated in >1500 clinical trials, but outcomes remain suboptimal because of knowledge gaps in quality attributes that confer potency. We show that TWIST1 directly represses TSG6 expression that TWIST1 and TSG6 are inversely correlated across bone marrow-derived MSC (BM-MSC) donor cohorts and predict interdonor differences in their proangiogenic, anti-inflammatory, and immune suppressive activity in vitro and in sterile inflammation and autoimmune type 1 diabetes preclinical models. Transcript profiling of TWIST1HiTSG6Low versus TWISTLowTSG6Hi BM-MSCs revealed previously unidentified roles for TWIST1/TSG6 in regulating cellular oxidative stress and TGF-ß2 in modulating TSG6 expression and anti-inflammatory activity. TWIST1 and TSG6 levels also correlate to donor stature and predict differences in iPSC-derived MSC quality attributes. These results validate TWIST1 and TSG6 as biomarkers that predict interdonor differences in potency across laboratories and assay platforms, thereby providing a means to manufacture MSC products tailored to specific diseases.


Mesenchymal Stem Cells , Humans , Anti-Inflammatory Agents/pharmacology , Biomarkers/metabolism , Bone Marrow Cells/metabolism , Cell Differentiation , Immunologic Factors/metabolism , Mesenchymal Stem Cells/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Twist-Related Protein 1/genetics , Twist-Related Protein 1/metabolism
7.
Front Oncol ; 13: 1114822, 2023.
Article En | MEDLINE | ID: mdl-37007131

Background: The canonical Wnt inhibitor Dickkopf-1 (Dkk-1) has the capacity to modulate homeostasis between canonical and non-canonical Wnt pathways and also signal independently of Wnt. The specific effects of Dkk-1 activity on tumor physiology are therefore unpredictable with examples of Dkk-1 serving as either a driver or suppressor of malignancy. Given that Dkk-1 blockade may serve as a potential treatment for some types of cancer, we questioned whether it is possible to predict the role of Dkk-1 on tumor progression based on the tissue origin of the tumor. Methods: Original research articles that described Dkk-1 in terms a tumor suppressor or driver of cancer growth were identified. To determine the association between tumor developmental origin and the role of Dkk-1, a logistic regression was performed. The Cancer Genome Atlas database was interrogated for survival statistics based on tumor Dkk-1 expression. Results: We report that Dkk-1 is statistically more likely to serve as a suppressor in tumors arising from the ectoderm (p = 0.0198) or endoderm (p = 0.0334) but more likely to serve as a disease driver in tumors of mesodermal origin (p = 0.0155). Survival analyses indicated that in cases where Dkk-1 expression could be stratified, high Dkk-1 expression is usually associated with poor prognosis. This in part may be due to pro-tumorigenic role Dkk-1 plays on tumor cells but also through its influence on immunomodulatory and angiogenic processes in the tumor stroma. Conclusion: Dkk-1 has a context-specific dual role as a tumor suppressor or driver. Dkk-1 is significantly more likely to serve as a tumor suppressor in tumors arising from ectoderm and endoderm while the converse is true for mesodermal tumors. Patient survival data indicated high Dkk-1 expression is generally a poor prognostic indicator. These findings provide further support for the importance of Dkk-1 as a therapeutic cancer target in some cases.

8.
PLoS One ; 18(3): e0282298, 2023.
Article En | MEDLINE | ID: mdl-36976801

The adoption of cell-based therapies into the clinic will require tremendous large-scale expansion to satisfy future demand, and bioreactor-microcarrier cultures are best suited to meet this challenge. The use of spherical microcarriers, however, precludes in-process visualization and monitoring of cell number, morphology, and culture health. The development of novel expansion methods also motivates the advancement of analytical methods used to characterize these microcarrier cultures. A robust optical imaging and image-analysis assay to non-destructively quantify cell number and cell volume was developed. This method preserves 3D cell morphology and does not require membrane lysing, cellular detachment, or exogenous labeling. Complex cellular networks formed in microcarrier aggregates were imaged and analyzed in toto. Direct cell enumeration of large aggregates was performed in toto for the first time. This assay was successfully applied to monitor cellular growth of mesenchymal stem cells attached to spherical hydrogel microcarriers over time. Elastic scattering and fluorescence lightsheet microscopy were used to quantify cell volume and cell number at varying spatial scales. The presented study motivates the development of on-line optical imaging and image analysis systems for robust, automated, and non-destructive monitoring of bioreactor-microcarrier cell cultures.


Cell Culture Techniques , Mesenchymal Stem Cells , Humans , Cell Culture Techniques/methods , Cell Culture Techniques, Three Dimensional , Bioreactors , Cell Proliferation
9.
Int J Aging Hum Dev ; 97(1): 81-110, 2023 07.
Article En | MEDLINE | ID: mdl-35711151

Given the scarce past research on custodial grandparents' early life circumstances, we investigated frequencies, patterns, and predictors of 14 adverse childhood experiences (ACEs) reported by 355 custodial grandmothers (CGMs). Predominant ACEs were bullying (54.6%), verbal abuse (51.5%), physical abuse (45.4%), and living with a substance abuser (41.1%). Only 11% of CGMs reported 0 ACEs, whereas 52.4% reported >4. Latent class analyses yielded three classes of ACE exposure: minimal (54.1%), physical/emotional abuse (25.9%), and complex (20.0%). Age was the only demographic factor related to ACE class, with the complex class being younger than the other two. MANCOVAs with age as a covariate revealed that different ACE profiles have unique impacts on CGMs' physical and psychological well-being. We conclude that ACEs are highly prevalent among CGMs and a serious public health concern. Future research addressing ACEs among CGMs is critical in order to support these caregivers and promote resilience in custodial grandfamilies.


Adverse Childhood Experiences , Grandparents , Humans , Self Report , Physical Abuse/psychology , Emotions
10.
PLoS One ; 17(6): e0269571, 2022.
Article En | MEDLINE | ID: mdl-35679245

The dog is an underrepresented large animal translational model for orthopedic cell-based tissue engineering. While chondrogenic differentiation of canine multipotent stromal cells (cMSCs) has been reported using the classic micromass technique, cMSCs respond inconsistently to this method. The objectives of this study were to develop a three-dimensional (3D), serum-free, Collagen Type I system to facilitate cMSC chondrogenesis and, once established, to determine the effect of chondrogenic growth factors on cMSC chondrogenesis. Canine MSCs were polymerized in 100 µL Collagen Type I gels (5 mg/mL) at 1 x 106 cells/construct. Constructs were assessed using morphometry, live/dead staining, and histology in 10 various chondrogenic media. Four media were selected for additional in-depth analyses via lactate dehydrogenase release, total glycosaminoglycan content, qPCR (COL1A1, COL2A, SOX9, ACAN, BGLAP and SP7), immunofluorescence, and TUNEL staining. In the presence of dexamethasone and transforming growth factor-ß3 (TGF-ß3), both bone morphogenic protein-2 (BMP-2) and basic fibroblast growth factor (bFGF) generated larger chondrogenic constructs, although BMP-2 was required to achieve histologic characteristics of chondrocytes. Chondrogenic medium containing dexamethasone, TGF-ß3, BMP-2 and bFGF led to a significant decrease in lactate dehydrogenase release at day 3 and glycosaminoglycan content was significantly increased in these constructs at day 3, 10, and 21. Both osteogenic and chondrogenic transcripts were induced in response to dexamethasone, TGF-ß3, BMP-2 and bFGF. Collagen Type II and X were detected in all groups via immunofluorescence. Finally, TUNEL staining was positive in constructs lacking BMP-2 or bFGF. In conclusion, the 3D, serum-free, Collagen Type-I assay described herein proved useful in assessing cMSC differentiation and will serve as a productive system to characterize cMSCs or to fabricate tissue engineering constructs for clinical use.


Chondrogenesis , Mesenchymal Stem Cells , Animals , Bone Marrow/metabolism , Cell Differentiation , Cells, Cultured , Chondrocytes/metabolism , Chondrogenesis/physiology , Collagen Type I/metabolism , Collagen Type II/metabolism , Dexamethasone/pharmacology , Dogs , Glycosaminoglycans/metabolism , Lactate Dehydrogenases , Transforming Growth Factor beta3/pharmacology
11.
Semin Ultrasound CT MR ; 43(4): 311-319, 2022 Aug.
Article En | MEDLINE | ID: mdl-35738816

Dual-energy computed tomography (DECT) is a contemporary development by which the tissue can be characterized beyond conventional computed tomography. It improves tissue differentiation by exploiting the X-ray absorptive property of the tissues. Although still in its early stages, DECT utilization in pulmonary and cardiovascular pathologies is emerging. It includes applications such as pulmonary embolism, pulmonary hypertension, myocardial perfusion, and coronary artery assessment. This article discusses DECT principles and their current and emerging applications in thoracic imaging.


Pulmonary Embolism , Radiography, Dual-Energy Scanned Projection , Humans , Lung , Radiography, Dual-Energy Scanned Projection/methods , Thorax , Tomography, X-Ray Computed/methods
12.
Sci Adv ; 8(17): eabl9404, 2022 04 29.
Article En | MEDLINE | ID: mdl-35476448

Bioactive materials harness the body's innate regenerative potential by directing endogenous progenitor cells to facilitate tissue repair. Dissolution products of inorganic biomaterials provide unique biomolecular signaling for tissue-specific differentiation. Inorganic ions (minerals) are vital to biological processes and play crucial roles in regulating gene expression patterns and directing cellular fate. However, mechanisms by which ionic dissolution products affect cellular differentiation are not well characterized. We demonstrate the role of the inorganic biomaterial synthetic two-dimensional nanosilicates and its ionic dissolution products on human mesenchymal stem cell differentiation. We use whole-transcriptome sequencing (RNA-sequencing) to characterize the contribution of nanosilicates and its ionic dissolution products on endochondral differentiation. Our study highlights the modulatory role of ions in stem cell transcriptome dynamics by regulating lineage-specific gene expression patterns. This work paves the way for leveraging biochemical characteristics of inorganic biomaterials to direct cellular processes and promote in situ tissue regeneration.


Biocompatible Materials , Stem Cells , Biocompatible Materials/chemistry , Cell Differentiation/genetics , Humans , Ions , Stem Cells/metabolism , Transcriptome
14.
Br J Cancer ; 127(1): 43-55, 2022 07.
Article En | MEDLINE | ID: mdl-35277659

BACKGROUND: Osteosarcoma (OS) is the most common primary bone malignancy. Chemotherapy plays an essential role in OS treatment, potentially doubling 5-year event-free survival if tumour necrosis can be stimulated. The canonical Wnt inhibitor Dickkopf-1 (Dkk-1) enhances OS survival in part through upregulation of aldehyde-dehydrogenase-1A1 which neutralises reactive oxygen species originating from nutritional stress and chemotherapeutic challenge. METHODS: A vivo morpholino (DkkMo) was employed to block the expression of Dkk-1 in OS cells. Cell mitosis, gene expression and bone destruction were measured in vitro and in vivo in the presence and absence of doxorubicin (DRB). RESULTS: DkkMo reduced the expression of Dkk-1 and Aldh1a1, reduced expansion of OS tumours, preserved bone volume and architecture and stimulated tumour necrosis. This was observed in the presence or absence of DRB. CONCLUSION: These results indicate that administration of DkkMo with or without chemotherapeutics can substantially improve OS outcome with respect to tumour expansion and osteolytic corruption of bone in experimental OS model.


Bone Neoplasms , Osteosarcoma , Bone Neoplasms/drug therapy , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Cell Line, Tumor , Humans , Intercellular Signaling Peptides and Proteins/genetics , Morpholinos/genetics , Morpholinos/pharmacology , Necrosis , Osteosarcoma/drug therapy , Osteosarcoma/genetics , Osteosarcoma/metabolism
15.
Front Bioeng Biotechnol ; 9: 764703, 2021.
Article En | MEDLINE | ID: mdl-34796168

Novel bone regeneration strategies often show promise in rodent models yet are unable to successfully translate to clinical therapy. Sheep, goats, and dogs are used as translational models in preparation for human clinical trials. While human MSCs (hMSCs) undergo osteogenesis in response to well-defined protocols, canine MSCs (cMSCs) are more incompletely characterized. Prior work suggests that cMSCs require additional agonists such as IGF-1, NELL-1, or BMP-2 to undergo robust osteogenic differentiation in vitro. When compared directly to hMSCs, cMSCs perform poorly in vivo. Thus, from both mechanistic and clinical perspectives, cMSC and hMSC-mediated bone regeneration may differ. The objectives of this study were twofold. The first was to determine if previous in vitro findings regarding cMSC osteogenesis were substantiated in vivo using an established murine calvarial defect model. The second was to assess in vitro ALP activity and endogenous BMP-2 gene expression in both canine and human MSCs. Calvarial defects (4 mm) were treated with cMSCs, sub-therapeutic BMP-2, or the combination of cMSCs and sub-therapeutic BMP-2. At 28 days, while there was increased healing in defects treated with cMSCs, defects treated with cMSCs and BMP-2 exhibited the greatest degree of bone healing as determined by quantitative µCT and histology. Using species-specific qPCR, cMSCs were not detected in relevant numbers 10 days after implantation, suggesting that bone healing was mediated by anabolic cMSC or ECM-driven cues and not via engraftment of cMSCs. In support of this finding, defects treated with cMSC + BMP-2 exhibited robust deposition of Collagens I, III, and VI using immunofluorescence. Importantly, cMSCs exhibited minimal ALP activity unless cultured in the presence of BMP-2 and did not express endogenous canine BMP-2 under any condition. In contrast, human MSCs exhibited robust ALP activity in all conditions and expressed human BMP-2 when cultured in control and osteoinduction media. This is the first in vivo study in support of previous in vitro findings regarding cMSC osteogenesis, namely that cMSCs require additional agonists to initiate robust osteogenesis. These findings are highly relevant to translational cell-based bone healing studies and represent an important finding for the field of canine MSC-mediated bone regeneration.

16.
Stem Cells Transl Med ; 10(12): 1650-1665, 2021 12.
Article En | MEDLINE | ID: mdl-34505405

Human mesenchymal stem cells (hMSCs) are effective in treating disorders resulting from an inflammatory or heightened immune response. The hMSCs derived from induced pluripotent stem cells (ihMSCs) share the characteristics of tissue derived hMSCs but lack challenges associated with limited tissue sources and donor variation. To meet the expected future demand for ihMSCs, there is a need to develop scalable methods for their production at clinical yields while retaining immunomodulatory efficacy. Herein, we describe a platform for the scalable expansion and rapid harvest of ihMSCs with robust immunomodulatory activity using degradable gelatin methacryloyl (GelMA) microcarriers. GelMA microcarriers were rapidly and reproducibly fabricated using a custom microfluidic step emulsification device at relatively low cost. Using vertical wheel bioreactors, 8.8 to 16.3-fold expansion of ihMSCs was achieved over 8 days. Complete recovery by 5-minute digestion of the microcarriers with standard cell dissociation reagents resulted in >95% viability. The ihMSCs matched or exceeded immunomodulatory potential in vitro when compared with ihMSCs expanded on monolayers. This is the first description of a robust, scalable, and cost-effective method for generation of immunomodulatory ihMSCs, representing a significant contribution to their translational potential.


Induced Pluripotent Stem Cells , Mesenchymal Stem Cells , Bioreactors , Cell Culture Techniques/methods , Cell Differentiation , Cell Proliferation , Gelatin/pharmacology , Humans , Methacrylates
17.
J Med Imaging (Bellingham) ; 8(1): 014503, 2021 Jan.
Article En | MEDLINE | ID: mdl-33542945

Purpose: Mesenchymal stem cells (MSCs) have demonstrated clinically relevant therapeutic effects for treatment of trauma and chronic diseases. The proliferative potential, immunomodulatory characteristics, and multipotentiality of MSCs in monolayer culture is reflected by their morphological phenotype. Standard techniques to evaluate culture viability are subjective, destructive, or time-consuming. We present an image analysis approach to objectively determine morphological phenotype of MSCs for prediction of culture efficacy. Approach: The algorithm was trained using phase-contrast micrographs acquired during the early and mid-logarithmic stages of MSC expansion. Cell regions are localized using edge detection, thresholding, and morphological operations, followed by cell marker identification using H-minima transform within each region to differentiate individual cells from cell clusters. Clusters are segmented using marker-controlled watershed to obtain single cells. Morphometric and textural features are extracted to classify cells based on phenotype using machine learning. Results: Algorithm performance was validated using an independent test dataset of 186 MSCs in 36 culture images. Results show 88% sensitivity and 86% precision for overall cell detection and a mean Sorensen-Dice coefficient of 0.849 ± 0.106 for segmentation per image. The algorithm exhibited an area under the curve of 0.816 ( CI 95 = 0.769 to 0.886) and 0.787 ( CI 95 = 0.716 to 0.851) for classifying MSCs according to their phenotype at early and mid-logarithmic expansion, respectively. Conclusions: The proposed method shows potential to segment and classify low and moderately dense MSCs based on phenotype with high accuracy and robustness. It enables quantifiable and consistent morphology-based quality assessment for various culture protocols to facilitate cytotherapy development.

18.
Stem Cells Dev ; 30(4): 214-226, 2021 02.
Article En | MEDLINE | ID: mdl-33356875

A growing body of work suggests that canine mesenchymal stromal cells (cMSCs) require additional agonists such as bone morphogenic protein-2 (BMP-2) for consistent in vitro osteogenic differentiation. BMP-2 is costly and may challenge the translational relevance of the canine model. Dexamethasone enhances osteogenic differentiation of human MSCs (hMSCs) and is widely utilized in osteogenic protocols. The aim of this study was to determine the effect of BMP-2 and dexamethasone on early- and late-stage osteogenesis of autologous and induced pluripotent stem cell (iPS)-derived cMSCs. Two preparations of marrow-derived cMSCs were selected to represent exceptionally or marginally osteogenic autologous cMSCs. iPS-derived cMSCs were generated from canine fibroblasts. All preparations were evaluated using alkaline phosphatase (ALP) activity, Alizarin Red staining of osteogenic monolayers, and quantitative polymerase chain reaction. Data were reported as mean ± standard deviation and compared using one- or two-way analysis of variance and Tukey or Sidak post hoc tests. Significance was established at P < 0.05. In early-stage assays, dexamethasone decreased ALP activity for all cMSCs in the presence of BMP-2. In late-stage assays, inclusion of dexamethasone and BMP-2 at Day 1 of culture produced robust monolayer mineralization for autologous cMSCs. Delivering 100 nM dexamethasone at Day 1 improved mineralization and reduced the BMP-2 concentrations required to achieve mineralization of the marginal cMSCs. For iPS-cMSCs, dexamethasone was inhibitory to both ALP activity and monolayer mineralization. There was increased expression of osteocalcin and osterix with BMP-2 in autologous cMSCs but a more modest expression occurred in iPS cMSCs. While autologous and iPS-derived cMSCs respond similarly in early-stage osteogenic assays, they exhibit unique responses to dexamethasone and BMP-2 in late-stage mineralization assays. This study demonstrates that dexamethasone and BMP-2 can be titrated in a time- and concentration-dependent manner to enhance osteogenesis of autologous cMSC preparations. These results will prove useful for investigators performing translational studies with cMSCs while providing insight into iPS-derived cMSC osteogenesis.


Bone Morphogenetic Protein 2/pharmacology , Cell Differentiation/drug effects , Dexamethasone/pharmacology , Induced Pluripotent Stem Cells/cytology , Mesenchymal Stem Cells/cytology , Osteogenesis/drug effects , Alkaline Phosphatase/metabolism , Animals , Cell Differentiation/genetics , Cells, Cultured , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Dogs , Gene Expression/drug effects , Glucocorticoids/pharmacology , Humans , Induced Pluripotent Stem Cells/metabolism , Mesenchymal Stem Cells/metabolism , Osteocalcin/genetics , Osteocalcin/metabolism , Osteogenesis/genetics , Reverse Transcriptase Polymerase Chain Reaction
19.
Article En | MEDLINE | ID: mdl-32719790

Engineered bone graft designs have been largely inspired by adult bone despite functionally significant differences from the composition of anabolic bone in both the mineralized and non-mineralized fractions. Specifically, anabolic bone contains hydroxyapatite with ionic substitutions that facilitate bone turnover and relatively rare collagens type VI and XII that are important for normal bone development. In this work, human mesenchymal stem cells (hMSCs) were cultured in lyophilized collagen type I scaffolds mineralized with hydroxyapatite containing Mg2+ substitutions, then induced to deposit an extracellular matrix (ECM) containing collagens VI and XII by exposure to GW9662, a PPARγ inhibitor. Delivery of GW9662 was accomplished through either Supplemented Media or via composite microspheres embedded in the scaffolds for localized delivery. Furthermore, hMSCs and scaffolds were cultured in both static and perfuse conditions to investigate the interaction between GW9662 treatment and perfusion and their effects on ECM deposition trends. Perfusion culture enhanced cell infiltration into the scaffold, deposition of collagen VI and XII, as well as osteogenic differentiation, as determined by gene expression of osteopontin, BMP2, and ALP. Furthermore, scaffold mineral density and compressive modulus were increased in response to both GW9662 treatment and perfusion after 3 weeks of culture. Local delivery of GW9662 with drug-eluting microspheres had comparable effects to systemic delivery in the perfusate. Together, these results demonstrate a strategy to create a scaffold mimicking both organic and inorganic characteristics of anabolic bone and its potential as a bone graft.

20.
Nat Commun ; 11(1): 3025, 2020 06 15.
Article En | MEDLINE | ID: mdl-32541821

Approximately 10% of fractures will not heal without intervention. Current treatments can be marginally effective, costly, and some have adverse effects. A safe and manufacturable mimic of anabolic bone is the primary goal of bone engineering, but achieving this is challenging. Mesenchymal stem cells (MSCs), are excellent candidates for engineering bone, but lack reproducibility due to donor source and culture methodology. The need for a bioactive attachment substrate also hinders progress. Herein, we describe a highly osteogenic MSC line generated from induced pluripotent stem cells that generates high yields of an osteogenic cell-matrix (ihOCM) in vitro. In mice, the intrinsic osteogenic activity of ihOCM surpasses bone morphogenic protein 2 (BMP2) driving healing of calvarial defects in 4 weeks by a mechanism mediated in part by collagen VI and XII. We propose that ihOCM may represent an effective replacement for autograft and BMP products used commonly in bone tissue engineering.


Osteogenesis , Pluripotent Stem Cells/cytology , Animals , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 2/metabolism , Cell Proliferation , Cells, Cultured , Collagen Type VI/genetics , Collagen Type VI/metabolism , Collagen Type XII/genetics , Collagen Type XII/metabolism , Craniofacial Abnormalities/physiopathology , Craniofacial Abnormalities/therapy , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/transplantation , Tissue Engineering
...