Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.704
Filtrar
2.
BMJ Open ; 14(6): e081157, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951008

RESUMEN

PURPOSE: Compared with older women diagnosed with breast cancer, younger women are more likely to die of breast cancer and more likely to suffer psychosocially in both the short-term and long term. The Young Women's Breast Cancer Study (YWS) is a multisite prospective cohort study established to address gaps in our knowledge about this vulnerable and understudied population. PARTICIPANTS: The YWS enrolled 1302 women newly diagnosed with stages 0-IV breast cancer at age 40 years or younger at 13 academic and community sites in North America between 2006 and 2016. Longitudinal patient-reported outcome data are complemented by clinical data abstraction and biospecimen collection at multiple timepoints. FINDINGS TO DATE: Key findings related to fertility include that nearly 40% of participants were interested in pregnancy following diagnosis; of those who reported interest, 10% pursued fertility preservation. Overall, approximately 10% of YWS participants became pregnant in the first 5 years after diagnosis; follow-up is ongoing for pregnancies after 5 years. Studies focused on psychosocial outcomes have characterised quality of life, post-traumatic stress and fear of recurrence, with findings detailing the factors associated with the substantial psychosocial burden many young women face during and following active treatment. Multiple studies have leveraged YWS biospecimens, including whole-exome sequencing of tumour analyses that revealed that select somatic alterations occur at different frequencies in young (age≤35) versus older women with luminal A breast cancer, and a study that explored clonal hematopoiesis of indeterminate potential found it to be rare in young survivors. FUTURE PLANS: With a median follow-up of approximately 10 years, the cohort is just maturing for many relevant long-term outcomes and provides outstanding opportunities to further study and build collaborations to address gaps in our knowledge, with the ultimate objective to improve care and outcomes for young women with breast cancer. TRIAL REGISTRATION NUMBER: NCT01468246.


Asunto(s)
Neoplasias de la Mama , Calidad de Vida , Humanos , Femenino , Neoplasias de la Mama/psicología , Neoplasias de la Mama/diagnóstico , Estudios Prospectivos , Adulto , Adulto Joven , Embarazo , Preservación de la Fertilidad/psicología , América del Norte , Medición de Resultados Informados por el Paciente , Trastornos por Estrés Postraumático/epidemiología , Trastornos por Estrés Postraumático/psicología
3.
Ann Surg ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38967354

RESUMEN

OBJECTIVES: Determine if timing of transplantation affects patient mortality. BACKGROUND: Neoadjuvant therapy and liver transplantation has emerged as an excellent treatment option for select patients with perihilar cholangiocarcinoma (pCCA). However, the optimal timing of transplantation is not known. METHODS: We reviewed all patients registered for a standardized pCCA protocol between 1996 - 2020 at our center. After adjusting for confounders, we examined the association of waiting time with patient mortality in an intention-to-treat cohort (n=392) and those who received a liver transplant (n=256). RESULTS: The median (interquartile range) time from registration to transplant or drop out was 5.74 (3.25-7.06) months. Compared to a short wait time (0-3 months), longer waiting times did not affect all-cause mortality: (3-6 months) hazard ratio (HR) 0.98; 95% CI 0.52-1.84; (6-9 months) HR 0.80; 95% CI 0.39-1.65; (9-12 months) HR 0.56; 95% CI 0.26-1.22. Subgroups with a shorter waiting time had similar survival to those with long waiting times: living donor available HR 0.97; 95% CI 0.67-1.42; AB or B blood group HR 0.93; 95% CI 0.62-1.39. Longer waiting times were associated with decreased all-cause mortality after transplantation (HR 0.92; 95% CI 0.87-0.97). This benefit began after a 6 month waiting time minimum (HR 0.53; 95% CI 0.26-1.10) and increased further after 9 months (HR; 0.43 95% CI 0.20-0.93). Waiting time was not associated with residual adenocarcinoma in the explant (odds ratio 0.99; 95% CI 0.98-1.00). CONCLUSIONS: A waiting time of at least 6 months will optimize results with transplantation without affecting overall (intention-to-treat) patient survival.

4.
J Am Coll Emerg Physicians Open ; 5(4): e13184, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38966284

RESUMEN

Background: Intraosseous (IO) infusion is a life-preserving technique when intravenous access is unobtainable. Successful IO infusion requires sufficiently high flow rates to preserve life but at low enough pressures to avoid complications. However, IO catheter tips are often misplaced, and the relative flow rates and pressures between IO catheter tips placed in medullary, trabecular, and cortical bone are not well described, which has important implications for clinical practice. Objectives: We developed the Zone Theory of IO Catheter Tip Placement based on bone density and proximity to the venous central sinus and then tested the influence of catheter tip placement locations on flow rates and pressures in a cadaveric swine model. Methods: Three cross-trained participants infused 500 mL of crystalloid fluid into cadaveric swine humerus and sternum (N = 210 trials total) using a push‒pull method with a 60 cm3 syringe. Computed tomography scans were scored by radiologists and categorized as zone 1 (medullary space), zone 2 (trabecular bone), or zone 3 (cortical bone) catheter tip placements. Differences between zones in flow rates, mean pressures, and peak pressures were assessed using analysis of variance and analysis of covariance to account for participant and site differences at the p < 0.05 threshold. Results: Zone 1 and zone 2 placements were essentially identical in flow rates, mean pressures, and peak pressures (each p > 0.05). Zone 1 and zone 2 placements were significantly higher in flow rates and lower in pressures than zone 3 placements (each p < 0.05 or less). Conclusion: Within the limitations of an unpressurized cadaveric swine model, the present findings suggest that IO catheter tip placements need not be perfect to acquire high flow rates at low pressures, only accurate enough to avoid the dense cortical bone of zone 3. Future research using in vivo animal and human models is needed to better define the clinical impact of IO catheter placement on infusion flow rates and pressures.

5.
PLoS Pathog ; 20(6): e1012351, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38924030

RESUMEN

AXL+ Siglec-6+ dendritic cells (ASDC) are novel myeloid DCs which can be subdivided into CD11c+ and CD123+ expressing subsets. We showed for the first time that these two ASDC subsets are present in inflamed human anogenital tissues where HIV transmission occurs. Their presence in inflamed tissues was supported by single cell RNA analysis of public databases of such tissues including psoriasis diseased skin and colorectal cancer. Almost all previous studies have examined ASDCs as a combined population. Our data revealed that the two ASDC subsets differ markedly in their functions when compared with each other and to pDCs. Relative to their cell functions, both subsets of blood ASDCs but not pDCs expressed co-stimulatory and maturation markers which were more prevalent on CD11c+ ASDCs, thus inducing more T cell proliferation and activation than their CD123+ counterparts. There was also a significant polarisation of naïve T cells by both ASDC subsets toward Th2, Th9, Th22, Th17 and Treg but less toward a Th1 phenotype. Furthermore, we investigated the expression of chemokine receptors that facilitate ASDCs and pDCs migration from blood to inflamed tissues, their HIV binding receptors, and their interactions with HIV and CD4 T cells. For HIV infection, within 2 hours of HIV exposure, CD11c+ ASDCs showed a trend in more viral transfer to T cells than CD123+ ASDCs and pDCs for first phase transfer. However, for second phase transfer, CD123+ ASDCs showed a trend in transferring more HIV than CD11c+ ASDCs and there was no viral transfer from pDCs. As anogenital inflammation is a prerequisite for HIV transmission, strategies to inhibit ASDC recruitment into inflamed tissues and their ability to transmit HIV to CD4 T cells should be considered.

6.
J Autoimmun ; 147: 103276, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38936147

RESUMEN

A hallmark of COVID-19 is the variety of complications that follow SARS-CoV-2 infection in some patients, and that target multiple organs and tissues. Also remarkable are the associations with several auto-inflammatory disorders and the presence of autoantibodies directed to a vast array of antigens. The processes underlying autoantibody production in COVID-19 have not been completed deciphered. Here, we review mechanisms involved in autoantibody production in COVID-19, multisystem inflammatory syndrome in children, and post-acute sequelae of COVID19. We critically discuss how genomic integrity, loss of B cell tolerance to self, superantigen effects of the virus, and extrafollicular B cell activation could underly autoantibody proaction in COVID-19. We also offer models that may account for the pathogenic roles of autoantibodies in the promotion of inflammatory cascades, thromboembolic phenomena, and endothelial and vascular deregulations.

7.
J Arthroplasty ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38936437

RESUMEN

BACKGROUND: Long-term complications following total joint arthroplasty are not well established for patients who have Ehlers-Danlos syndrome (EDS), a group of connective tissue disorders. This study compared 10-year incidence of revision surgery after total hip arthroplasty (THA) and total knee arthroplasty (TKA) in patients who have and do not have EDS. METHODS: A retrospective cohort analysis was conducted using a national all-payer claims database from 2010 to 2021 to identify patients who underwent primary TKA or THA. Patients who had and did not have EDS were propensity-score matched by age, sex, and a comorbidity index. Kaplan-Meier analyses and Cox proportional hazard models were utilized to determine the cumulative incidence and risks of revision experienced by patients who have and do not have EDS. RESULTS: The EDS patients who underwent TKA had a higher risk of all-cause revision (hazard ratio (HR): 1.50, 95% confidence interval (95% CI): 1.09 to 2.07, P < 0.014) and risk of revision due to instability (HR = 2.49, 95% CI: 1.37 to 4.52, P < 0.003). The EDS patients who underwent THA had a higher risk of all-cause revision (HR = 2.32, 95% CI: 1.47 to 3.65, P < 0.001), revision due to instability (HR = 4.26, 95% CI: 2.17 to 8.36, P < 0.001), and mechanical loosening (HR = 3.63, 95% CI: 2.05 to 6.44, P < 0.001). CONCLUSION: Patients who had EDS were found to have a higher incidence of revision within 10 years of undergoing TKA and THA compared to matched controls, especially for instability. Patients who have EDS should be counseled accordingly. Surgical technique and implant selection should include consideration for increased constraint in TKA and larger femoral heads or dual mobility articulations for THA.

8.
bioRxiv ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38826245

RESUMEN

Purpose: To develop multichannel transmit and receive arrays towards capturing the ultimate-intrinsic-SNR (uiSNR) at 10.5 Tesla (T) and to demonstrate the feasibility and potential of whole-brain, high-resolution human brain imaging at this high field strength. Methods: A dual row 16-channel self-decoupled transmit (Tx) array was converted to a 16Tx/Rx transceiver using custom transmit/receive switches. A 64-channel receive-only (64Rx) array was built to fit into the 16Tx/Rx array. Electromagnetic modeling and experiments were employed to define safe operation limits of the resulting 16Tx/80Rx array and obtain FDA approval for human use. Results: The 64Rx array alone captured approximately 50% of the central uiSNR at 10.5T while the identical 7T 64Rx array captured ∼76% of uiSNR at this lower field strength. The 16Tx/80Rx configuration brought the fraction of uiSNR captured at 10.5T to levels comparable to the performance of the 64Rx array at 7T. SNR data obtained at the two field strengths with these arrays displayed dependent increases over a large central region. Whole-brain high resolution T 2 * and T 1 weighted anatomical and gradient-recalled echo EPI BOLD fMRI images were obtained at 10.5T for the first time with such an advanced array, illustrating the promise of >10T fields in studying the human brain. Conclusion: We demonstrated the ability to approach the uiSNR at 10.5T over the human brain with a novel, high channel count array, achieving large SNR gains over 7T, currently the most commonly employed ultrahigh field platform, and demonstrate high resolution and high contrast anatomical and functional imaging at 10.5T.

9.
Aging Cell ; 23(6): e14115, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38831622

RESUMEN

With aging skeletal muscle fibers undergo repeating cycles of denervation and reinnervation. In approximately the 8th decade of life reinnervation no longer keeps pace, resulting in the accumulation of persistently denervated muscle fibers that in turn cause an acceleration of muscle dysfunction. The significance of denervation in important clinical outcomes with aging is poorly studied. The Study of Muscle, Mobility, and Aging (SOMMA) is a large cohort study with the primary objective to assess how aging muscle biology impacts clinically important traits. Using transcriptomics data from vastus lateralis muscle biopsies in 575 participants we have selected 49 denervation-responsive genes to provide insights to the burden of denervation in SOMMA, to test the hypothesis that greater expression of denervation-responsive genes negatively associates with SOMMA participant traits that included time to walk 400 meters, fitness (VO2peak), maximal mitochondrial respiration, muscle mass and volume, and leg muscle strength and power. Consistent with our hypothesis, increased transcript levels of: a calciumdependent intercellular adhesion glycoprotein (CDH15), acetylcholine receptor subunits (CHRNA1, CHRND, CHRNE), a glycoprotein promoting reinnervation (NCAM1), a transcription factor regulating aspects of muscle organization (RUNX1), and a sodium channel (SCN5A) were each negatively associated with at least 3 of these traits. VO2peak and maximal respiration had the strongest negative associations with 15 and 19 denervation-responsive genes, respectively. In conclusion, the abundance of denervationresponsive gene transcripts is a significant determinant of muscle and mobility outcomes in aging humans, supporting the imperative to identify new treatment strategies to restore innervation in advanced age.


Asunto(s)
Envejecimiento , Músculo Esquelético , Humanos , Envejecimiento/genética , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/inervación , Anciano , Femenino , Persona de Mediana Edad , Estudios de Cohortes , Adulto
10.
Aging Cell ; 23(6): e14114, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38831629

RESUMEN

Gene expression in skeletal muscle of older individuals may reflect compensatory adaptations in response to oxidative damage that preserve tissue integrity and maintain function. Identifying associations between oxidative stress response gene expression patterns and mitochondrial function, physical performance, and muscle mass in older individuals would further our knowledge of mechanisms related to managing molecular damage that may be targeted to preserve physical resilience. To characterize expression patterns of genes responsible for the oxidative stress response, RNA was extracted and sequenced from skeletal muscle biopsies collected from 575 participants (≥70 years old) from the Study of Muscle, Mobility, and Aging. Expression levels of 21 protein-coding RNAs related to the oxidative stress response were analyzed in relation to six phenotypic measures, including maximal mitochondrial respiration from muscle biopsies (Max OXPHOS), physical performance (VO2 peak, 400-m walking speed, and leg strength), and muscle size (thigh muscle volume and whole-body D3Cr muscle mass). The mRNA level of the oxidative stress response genes most consistently associated across outcomes are preferentially expressed within the mitochondria. Higher expression of mRNAs that encode generally mitochondria located proteins SOD2, TRX2, PRX3, PRX5, and GRX2 were associated with higher levels of mitochondrial respiration and VO2 peak. In addition, greater SOD2, PRX3, and GRX2 expression was associated with higher physical performance and muscle size. Identifying specific mechanisms associated with high functioning across multiple performance and physical domains may lead to targeted antioxidant interventions with greater impacts on mobility and independence.


Asunto(s)
Envejecimiento , Músculo Esquelético , Estrés Oxidativo , Humanos , Estrés Oxidativo/genética , Anciano , Envejecimiento/genética , Envejecimiento/metabolismo , Masculino , Músculo Esquelético/metabolismo , Femenino , Rendimiento Físico Funcional , Mitocondrias/metabolismo , Mitocondrias/genética , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/genética , Anciano de 80 o más Años
11.
Hepatol Commun ; 8(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38829197

RESUMEN

BACKGROUND: The pathogenesis of primary sclerosing cholangitis (PSC) is unclear, although studies implicate IL-17A as an inflammatory mediator in this disease. However, a direct assessment of IL-17 signaling in PSC cholangiocytes is lacking. In this study, we aimed to investigate and characterize the response of PSC extrahepatic cholangiocyte organoids (ECO) to IL-17A stimulation. METHODS: Cholangiocytes obtained from patients with PSC and without PSC by endoscopic retrograde cholangiography were cultured as ECO. The ECO were treated with vehicle or IL-17A and assessed by transcriptomics, secretome analysis, and genome sequencing. RESULTS: Unsupervised clustering of all integrated single-cell RNA sequencing data identified 8 cholangiocyte clusters that did not differ between PSC and non-PSC ECO. However, PSC ECO cells demonstrated a robust response to IL-17 treatment, as noted by an increased number of differentially expressed genes by transcriptomics and more abundant chemokine and cytokine expression and secretion. After rigorous filtering, genome sequencing identified candidate somatic variants shared among PSC ECO from unrelated individuals. However, no candidate rare variants in genes regulating the IL-17 pathway were identified, but rare variants regulating the MAPK signaling pathway were present in all PSC ECO. CONCLUSIONS: PSC and non-PSC patient-derived ECO respond differently to IL-17 stimulation, implicating this pathway in the pathogenesis of PSC.


Asunto(s)
Colangitis Esclerosante , Interleucina-17 , Organoides , Transducción de Señal , Humanos , Interleucina-17/metabolismo , Colangitis Esclerosante/inmunología , Colangitis Esclerosante/genética , Transcriptoma , Masculino
12.
Hepatology ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38905442

RESUMEN

BACKGROUND AND AIMS: Early identification of malignant biliary strictures (MBS) is challenging, with up to 20% classified as indeterminants after preliminary testing and tissue sampling with endoscopic retrograde cholangiopancreatography (ERCP). We aimed to evaluate the use of methylated DNA markers (MDM) from biliary brushings to enhance MBS detection in a prospective cohort. METHODS: Candidate MDMs were evaluated for their utility in MBS diagnosis through a series of discovery and validation phases. DNA was extracted from biliary brushing samples, quantified, bisulfite-converted, and then subjected to methylation-specific Droplet Digital Polymerase Chain Reaction (ddPCR).  Patients were considered to have no malignancy if the sampling was negative and there was no evidence of malignancy after 1 year or definitive negative surgical histopathology. RESULTS: Fourteen candidate MDMs were evaluated in the discovery phase, with top-performing and new markers evaluated in the technical validation phase. The top four MDMs were TWIST1, HOXA1, VSTM2B, and CLEC11A, which individually achieved AUC values of 0.82, 0.81, 0.83, and 0.78, respectively, with sensitivities of 59.4%, 53.1%, 62.5%, and 50.0%, respectively, at high specificities for malignancy of 95.2-95.3% for the final biologic validation phase. When combined as a panel, the AUC was 0.86, achieving 73.4% sensitivity and 92.9% specificity, which outperformed cytology and fluorescent in situ hybridization (FISH). CONCLUSIONS: The selected methylated DNA markers demonstrated improved performance characteristics for the detection of MBS compared to cytology and FISH. ​ Therefore, MDMs should be considered viable candidates for inclusion in diagnostic testing algorithms.​.

13.
Semin Cancer Biol ; 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38917876

RESUMEN

Epithelial-mesenchymal transition (EMT) is a major contributor to metastatic progression and is prominently regulated by TGF-ß signalling. Both EMT and TGF-ß pathway components are tightly controlled by non-coding RNAs - including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) - that collectively have major impacts on gene expression and resulting cellular states. While miRNAs are the best characterised regulators of EMT and TGF-ß signaling and the miR-200-ZEB1/2 feedback loop plays a central role, important functions for lncRNAs and circRNAs are also now emerging. This review will summarise our current understanding of the roles of non-coding RNAs in EMT and TGF-ß signaling with a focus on their functions in cancer progression.

14.
Clin Cancer Res ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38922339

RESUMEN

BACKGROUND: Even though BRAF fusions are increasingly detected in standard multigene next-generation sequencing panels, few reports have explored their structure and impact on clinical course. PATIENTS/METHODS: We collected data from patients with BRAF fusion-positive cancers identified through a genotyping protocol of 97,024 samples. Fusions were characterized and reviewed for oncogenic potential (in-frame status, non-BRAF partner gene, intact BRAF kinase domain). RESULTS: We found 241 BRAF fusion-positive tumors from 212 patients with 82 unique 5' fusion partners spanning 52 histologies. 39 fusion partners were not previously reported, and 61 were identified once. BRAF fusion incidence was enriched in pilocytic astrocytomas, gangliomas, low-grade neuroepithelial tumors, and acinar cell carcinoma of the pancreas. 24 patients spanning multiple histologies were treated with MAPK-directed therapies of which 20 were evaluable for RECIST. Best response was partial response (N=2), stable disease (N=11), and progressive disease (N=7). The median time on therapy was 1 month with MEK plus BRAF inhibitors ([N=11], range 0-18 months) and 8 months for MEK inhibitors ([N=14], range 1-26 months). 9 patients remained on treatment for longer than 6 months [pilocytic astrocytomas (N=6), Erdheim-Chester disease (N=1), extraventricular neurocytoma (N=1), melanoma (N=1)]. Fifteen patients had acquired BRAF fusions. CONCLUSIONS: BRAF fusions are found across histologies and represent an emerging actionable target. BRAF fusions have a diverse set of fusion partners. Durable responses to MAPK therapies were seen, particularly in pilocytic astrocytomas. Acquired BRAF fusions were identified after targeted therapy underscoring the importance of post-progression biopsies to optimize treatment at relapse in these patients.

15.
Dev Psychopathol ; : 1-14, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934483

RESUMEN

This study examines associations between early childhood attachment security and adolescent personality functioning in a high-risk sample within a developmental psychopathology framework. Data from 2,268 children (1165 male; 1103 female) and caregivers participating in Future of Families and Child Well-Being Study (FFCWS) were used to examine (1) effects of genetic polymorphisms of the serotonin transporter (5-HTTLPR) and dopamine D4 receptor (DRD4) genes and adverse childhood experiences (ACEs) on attachment security and emotional and behavioral dysregulation in early childhood and (2) longitudinal associations and transactional relationships among attachment security, dysregulation, negative parenting attitudes and behaviors, social competence, and adolescent personality functioning. Results revealed that ACEs predicted attachment security over and above sex or the genetic risk, and gene × environment interactions did not increment prediction. Results of cascade models showed that greater early childhood attachment security predicted higher adolescent level of personality functioning via pathways through intermediary variables. Limitations and future research directions are discussed.

16.
Sci Rep ; 14(1): 13989, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38886371

RESUMEN

In vitro evolution and whole genome analysis has proven to be a powerful method for studying the mechanism of action of small molecules in many haploid microbes but has generally not been applied to human cell lines in part because their diploid state complicates the identification of variants that confer drug resistance. To determine if haploid human cells could be used in MOA studies, we evolved resistance to five different anticancer drugs (doxorubicin, gemcitabine, etoposide, topotecan, and paclitaxel) using a near-haploid cell line (HAP1) and then analyzed the genomes of the drug resistant clones, developing a bioinformatic pipeline that involved filtering for high frequency alleles predicted to change protein sequence, or alleles which appeared in the same gene for multiple independent selections with the same compound. Applying the filter to sequences from 28 drug resistant clones identified a set of 21 genes which was strongly enriched for known resistance genes or known drug targets (TOP1, TOP2A, DCK, WDR33, SLCO3A1). In addition, some lines carried structural variants that encompassed additional known resistance genes (ABCB1, WWOX and RRM1). Gene expression knockdown and knockout experiments of 10 validation targets showed a high degree of specificity and accuracy in our calls and demonstrates that the same drug resistance mechanisms found in diverse clinical samples can be evolved, discovered and studied in an isogenic background.


Asunto(s)
Antineoplásicos , Resistencia a Antineoplásicos , Haploidia , Humanos , Resistencia a Antineoplásicos/genética , Antineoplásicos/farmacología , Genoma Humano , Secuenciación Completa del Genoma/métodos , Línea Celular
17.
JHEP Rep ; 6(6): 101068, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38882601

RESUMEN

Background & Aims: Metabolomic and lipidomic analyses provide an opportunity for novel biological insights. Cholangiocarcinoma (CCA) remains a highly lethal cancer with limited response to systemic, targeted, and immunotherapeutic approaches. Using a global metabolomics and lipidomics platform, this study aimed to discover and characterize metabolomic variations and associated pathway derangements in patients with CCA. Methods: Leveraging a biospecimen collection, including samples from patients with digestive diseases and normal controls, global serum metabolomic and lipidomic profiling was performed on 213 patients with CCA and 98 healthy controls. The CCA cohort of patients included representation of intrahepatic, perihilar, and distal CCA tumours. Metabolome-wide association studies utilizing multivariable linear regression were used to perform case-control comparisons, followed by pathway enrichment analysis, CCA subtype analysis, and disease stage analysis. The impact of biliary obstruction was evaluated by repeating analyses in subsets of patients only with normal bilirubin levels. Results: Of the 420 metabolites that discriminated patients with CCA from controls, decreased abundance of cysteine-glutathione disulfide was most closely associated with CCA. Additional conjugated bile acid species were found in increased abundance even in the absence of clinically relevant biliary obstruction denoted by elevated serum bilirubin levels. Pathway enrichment analysis also revealed alterations in caffeine metabolism and mitochondrial redox-associated pathways in the serum of patients with CCA. Conclusions: The presented metabolomic and lipidomic profiling demonstrated multiple alterations in the serum of patients with CCA. These exploratory data highlight novel metabolic pathways in CCA and support future work in therapeutic targeting of these pathways and the development of a precision biomarker panel for diagnosis. Impact and implications: Cholangiocarcinoma (CCA) is a highly lethal hepatobiliary cancer with limited treatment response, highlighting the need for a better understanding of the disease biology. Using a global metabolomics and lipidomics platform, we characterized distinct changes in the serum of 213 patients with CCA compared with healthy controls. The results of this study elucidate novel metabolic pathways in CCA. These findings benefit stakeholders in both the clinical and research realms by providing a foundation for improved disease diagnostics and identifying novel targets for therapeutic design.

18.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38892433

RESUMEN

Phenotypic susceptibility testing of the Mycobacterium tuberculosis complex (MTBC) isolate requires culture growth, which can delay rapid detection of resistant cases. Whole genome sequencing (WGS) and data analysis pipelines can assist in predicting resistance to antimicrobials used in the treatment of tuberculosis (TB). This study compared phenotypic susceptibility testing results and WGS-based predictions of antimicrobial resistance (AMR) to four first-line antimicrobials-isoniazid, rifampin, ethambutol, and pyrazinamide-for MTBC isolates tested between the years 2018-2022. For this 5-year retrospective analysis, the WGS sensitivity for predicting resistance for isoniazid, rifampin, ethambutol, and pyrazinamide using Mykrobe was 86.7%, 100.0%, 100.0%, and 47.8%, respectively, and the specificity was 99.4%, 99.5%, 98.7%, and 99.9%, respectively. The predictive values improved slightly using Mykrobe corrections applied using TB Profiler, i.e., the WGS sensitivity for isoniazid, rifampin, ethambutol, and pyrazinamide was 92.31%, 100%, 100%, and 57.78%, respectively, and the specificity was 99.63%. 99.45%, 98.93%, and 99.93%, respectively. The utilization of WGS-based testing addresses concerns regarding test turnaround time and enables analysis for MTBC member identification, antimicrobial resistance prediction, detection of mixed cultures, and strain genotyping, all through a single laboratory test. WGS enables rapid resistance detection compared to traditional phenotypic susceptibility testing methods using the WHO TB mutation catalog, providing an insight into lesser-known mutations, which should be added to prediction databases as high-confidence mutations are recognized. The WGS-based methods can support TB elimination efforts in Canada and globally by ensuring the early start of appropriate treatment, rapidly limiting the spread of TB outbreaks.


Asunto(s)
Antituberculosos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis , Secuenciación Completa del Genoma , Secuenciación Completa del Genoma/métodos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efectos de los fármacos , Antituberculosos/farmacología , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Estudios Retrospectivos , Farmacorresistencia Bacteriana/genética , Genoma Bacteriano , Etambutol/farmacología , Isoniazida/farmacología , Pirazinamida/farmacología , Tuberculosis/microbiología , Tuberculosis/tratamiento farmacológico , Rifampin/farmacología
19.
J Gastrointest Surg ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38878956

RESUMEN

BACKGROUND: Elderly patients can experience torpid hospitalization that is often characterized by malnutrition. In this setting, enteral feeding may facilitate improvement in nutritional status. This study aimed to compare the perioperative outcomes between elderly (age of ≥65 years old) and nonelderly (age of <65 years old) patients undergoing elective enteral access placement. METHODS: Adult patients who underwent enteral access procedures between 2018 and 2020 at a tertiary care facility were retrospectively reviewed. Differences in baseline characteristics between nonelderly and elderly patients were adjusted using entropy-balanced weights. Subsequently, multivariate logistic and linear regression models were developed to evaluate the association between elderly status and outcomes of interest. RESULTS: Overall, 914 patients with enteral access met the inclusion criteria, of whom 471 (51.5%) were elderly. Elderly patients more commonly received percutaneous gastrostomy and had a higher burden of comorbidities as measured using the Charlson Comorbidity Index than nonelderly patients. Multivariate risk adjustment generated a strongly balanced distribution of baseline covariates between patient groups. After adjustment, despite no significant association with inhospital mortality, reoperation, or time to feeding goals, elderly status was linked to an approximately 8-day reduction in length of stay (95% CI, -14.28 to -2.30; P = .007) and significantly lower odds of total parenteral nutrition (adjusted odds ratio [AOR], 0.59; 95% CI, 0.37-0.94; P = .026) and nonelective readmission (AOR, 0.65; 95% CI, 0.49-0.86; P = .003). In addition, elderly status was associated with significantly greater odds of nonhome discharge (AOR, 1.58; 95% CI, 1.17-2.13; P = .003). CONCLUSION: Despite having more comorbidities than their nonelderly counterparts, elderly patients experienced favorable nutritional and perioperative outcomes after enteral access placement.

20.
mSystems ; : e0033424, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916306

RESUMEN

Microcystis spp. are renowned for producing the hepatotoxin microcystin in freshwater cyanobacterial harmful algal blooms around the world, threatening drinking water supplies and public and environmental health. However, Microcystis genomes also harbor numerous biosynthetic gene clusters (BGCs) encoding the biosynthesis of other secondary metabolites, including many with toxic properties. Most of these BGCs are uncharacterized and currently lack links to biosynthesis products. However, recent field studies show that many of these BGCs are abundant and transcriptionally active in natural communities, suggesting potentially important yet unknown roles in bloom ecology and water quality. Here, we analyzed 21 xenic Microcystis cultures isolated from western Lake Erie to investigate the diversity of the biosynthetic potential of this genus. Through metabologenomic and in silico approaches, we show that these Microcystis strains contain variable BGCs, previously observed in natural populations, and encode distinct metabolomes across cultures. Additionally, we find that the majority of metabolites and gene clusters are uncharacterized, highlighting our limited understanding of the chemical repertoire of Microcystis spp. Due to the complex metabolomes observed in culture, which contain a wealth of diverse congeners as well as unknown metabolites, these results underscore the need to deeply explore and identify secondary metabolites produced by Microcystis beyond microcystins to assess their impacts on human and environmental health.IMPORTANCEThe genus Microcystis forms dense cyanobacterial harmful algal blooms (cyanoHABs) and can produce the toxin microcystin, which has been responsible for drinking water crises around the world. While microcystins are of great concern, Microcystis also produces an abundance of other secondary metabolites that may be of interest due to their potential for toxicity, ecological importance, or pharmaceutical applications. In this study, we combine genomic and metabolomic approaches to study the genes responsible for the biosynthesis of secondary metabolites as well as the chemical diversity of produced metabolites in Microcystis strains from the Western Lake Erie Culture Collection. This unique collection comprises Microcystis strains that were directly isolated from western Lake Erie, which experiences substantial cyanoHAB events annually and has had negative impacts on drinking water, tourism, and industry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...