Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
medRxiv ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39132489

RESUMEN

Human lifespan is shaped by both genetic and environmental exposures and their interaction. To enable precision health, it is essential to understand how genetic variants contribute to earlier death or prolonged survival. In this study, we tested the association of common genetic variants and the burden of rare non-synonymous variants in a survival analysis, using age-at-death (N = 35,551, median [min, max] = 72.4 [40.9, 85.2]), and last-known-age (N = 358,282, median [min, max] = 71.9 [52.6, 88.7]), in European ancestry participants of the UK Biobank. The associations we identified seemed predominantly driven by cancer, likely due to the age range of the cohort. Common variant analysis highlighted three longevity-associated loci: APOE, ZSCAN23, and MUC5B. We identified six genes whose burden of loss-of-function variants is significantly associated with reduced lifespan: TET2, ATM, BRCA2, CKMT1B, BRCA1 and ASXL1. Additionally, in eight genes, the burden of pathogenic missense variants was associated with reduced lifespan: DNMT3A, SF3B1, CHL1, TET2, PTEN, SOX21, TP53 and SRSF2. Most of these genes have previously been linked to oncogenic-related pathways and some are linked to and are known to harbor somatic variants that predispose to clonal hematopoiesis. A direction-agnostic (SKAT-O) approach additionally identified significant associations with C1orf52, TERT, IDH2, and RLIM, highlighting a link between telomerase function and longevity as well as identifying additional oncogenic genes. Our results emphasize the importance of understanding genetic factors driving the most prevalent causes of mortality at a population level, highlighting the potential of early genetic testing to identify germline and somatic variants increasing one's susceptibility to cancer and/or early death.

2.
bioRxiv ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38915561

RESUMEN

Organ-derived plasma protein signatures derived from aptamer protein arrays track organ-specific aging, disease, and mortality in humans, but the robustness and clinical utility of these models and their biological underpinnings remain unknown. Here, we estimate biological age of 11 organs from 44,526 individuals in the UK Biobank using an antibody-based proteomics platform to model disease and mortality risk. Organ age estimates are associated with future onset of heart failure (heart age HR=1.83), chronic obstructive pulmonary disease (lung age HR=1.39), type II diabetes (kidney age HR=1.58), and Alzheimer's disease (brain age HR=1.81) and sensitive to lifestyle factors such as smoking and exercise, hormone replacement therapy, or supplements. Remarkably, the accrual of aged organs progressively increases mortality risk while a youthful brain and immune system are uniquely associated with disease-free longevity. These findings support the use of plasma proteins for monitoring organ health and the efficacy of drugs targeting organ aging disease.

3.
medRxiv ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38712163

RESUMEN

Importance: The X chromosome has remained enigmatic in Alzheimer's disease (AD), yet it makes up 5% of the genome and carries a high proportion of genes expressed in the brain, making it particularly appealing as a potential source of unexplored genetic variation in AD. Objectives: Perform the first large-scale X chromosome-wide association study (XWAS) of AD. Primary analyses are non-stratified, while secondary analyses evaluate sex-stratified effects. Design: Meta-analysis of genetic association studies in case-control, family-based, population-based, and longitudinal AD-related cohorts from the US Alzheimer's Disease Genetics Consortium (ADGC) and Alzheimer's Disease Sequencing Project (ADSP), the UK Biobank (UKB), the Finnish health registry (FinnGen), and the US Million Veterans Program (MVP). Risk for AD evaluated through case-control logistic regression analyses. Data were analyzed between January 2023 and March 2024. Setting: Genetic data available from high-density single-nucleotide polymorphism (SNP) microarrays and whole-genome sequencing (WGS). Summary statistics for multi-tissue expression and protein quantitative trait loci (QTL) available from published studies, enabling follow-up genetic colocalization analyses. Participants: 1,629,863 eligible participants were selected from referred and volunteer samples, of which 477,596 were excluded for analysis exclusion criteria. Number of participants who declined to participate in original studies was not available. Main Outcome and Measures: Risk for AD (odds ratio; OR) with 95% confidence intervals (CI). Associations were considered at X-chromosome-wide (P-value<1e-5) and genome-wide (P-value<5e-8) significance. Results: Analyses included 1,152,284 non-Hispanic White European ancestry subjects (57.3% females), including 138,558 cases. 6 independent genetic loci passed X-chromosome-wide significance, with 4 showing support for causal links between the genetic signal for AD and expression of nearby genes in brain and non-brain tissues. One of these 4 loci passed conservative genome-wide significance, with its lead variant centered on an intron of SLC9A7 (OR=1.054, 95%-CI=[1.035, 1.075]) and colocalization analyses prioritizing both the SLC9A7 and nearby CHST7 genes. Conclusion and Relevance: We performed the first large-scale XWAS of AD and identified the novel SLC9A7 locus. SLC9A7 regulates pH homeostasis in Golgi secretory compartments and is anticipated to have downstream effects on amyloid beta accumulation. Overall, this study significantly advances our knowledge of AD genetics and may provide novel biological drug targets.

4.
bioRxiv ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38746367

RESUMEN

We have developed the regional principal components (rPCs) method, a novel approach for summarizing gene-level methylation. rPCs address the challenge of deciphering complex epigenetic mechanisms in diseases like Alzheimer's disease (AD). In contrast to traditional averaging, rPCs leverage principal components analysis to capture complex methylation patterns across gene regions. Our method demonstrated a 54% improvement in sensitivity over averaging in simulations, offering a robust framework for identifying subtle epigenetic variations. Applying rPCs to the AD brain methylation data in ROSMAP, combined with cell type deconvolution, we uncovered 838 differentially methylated genes associated with neuritic plaque burden-significantly outperforming conventional methods. Integrating methylation quantitative trait loci (meQTL) with genome-wide association studies (GWAS) identified 17 genes with potential causal roles in AD, including MS4A4A and PICALM. Our approach is available in the Bioconductor package regionalpcs, opening avenues for research and facilitating a deeper understanding of the epigenetic landscape in complex diseases.

5.
Brain Behav Immun ; 119: 807-817, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38710339

RESUMEN

Understanding the psychiatric symptoms of Alzheimer s disease (AD) is crucial for advancing precision medicine and therapeutic strategies. The relationship between AD behavioral symptoms and asymmetry in spatial tau PET patterns is not well-known. Braak tau progression implicates the temporal lobes early. However, the clinical and pathological implications of temporal tau laterality remain unexplored. This cross-sectional study investigated the correlation between temporal tau PET asymmetry and behavior assessed using the neuropsychiatric inventory and composite scores for memory, executive function, and language, using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. In the entire cohort, continuous right and left temporal tau contributions to behavior and cognition were evaluated, controlling for age, sex, education, and tau burden on the contralateral side. Additionally, a temporal tau laterality index was calculated to define "asymmetry-extreme" groups (individuals with laterality indices greater than two standard deviations from the mean). 695 individuals (age = 73.9 ± 7.6 years, 372 (53.5 %) females) were included, comprising 281 (40%) cognitively unimpaired (CU) amyloid negative, 185 (27%) CU amyloid positive, and 229 (33%) impaired (CI) amyloid positive participants. In the full cohort analysis, right temporal tau was associated with worse behavior (B = 8.14, p-value = 0.007), and left temporal tau was associated with worse language (B = 1.4, p-value < 0.001). Categorization into asymmetry-extreme groups revealed 20 right- and 27 left-asymmetric participants. Within these extreme groups, there was additional heterogeneity along the anterior-posterior dimension. Asymmetrical tau burden is associated with distinct behavioral and cognitive profiles. Wide multi-cultural implementation of social cognition measures is needed to understand right-sided asymmetry in AD.


Asunto(s)
Enfermedad de Alzheimer , Lenguaje , Tomografía de Emisión de Positrones , Lóbulo Temporal , Proteínas tau , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Femenino , Masculino , Anciano , Proteínas tau/metabolismo , Estudios Transversales , Lóbulo Temporal/metabolismo , Lóbulo Temporal/diagnóstico por imagen , Anciano de 80 o más Años , Tomografía de Emisión de Positrones/métodos , Pruebas Neuropsicológicas , Lateralidad Funcional/fisiología , Cognición/fisiología , Función Ejecutiva/fisiología , Memoria/fisiología
6.
medRxiv ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38585781

RESUMEN

Rare structural variants (SVs) - insertions, deletions, and complex rearrangements - can cause Mendelian disease, yet they remain difficult to accurately detect and interpret. We sequenced and analyzed Oxford Nanopore long-read genomes of 68 individuals from the Undiagnosed Disease Network (UDN) with no previously identified diagnostic mutations from short-read sequencing. Using our optimized SV detection pipelines and 571 control long-read genomes, we detected 716 long-read rare (MAF < 0.01) SV alleles per genome on average, achieving a 2.4x increase from short-reads. To characterize the functional effects of rare SVs, we assessed their relationship with gene expression from blood or fibroblasts from the same individuals, and found that rare SVs overlapping enhancers were enriched (LOR = 0.46) near expression outliers. We also evaluated tandem repeat expansions (TREs) and found 14 rare TREs per genome; notably these TREs were also enriched near overexpression outliers. To prioritize candidate functional SVs, we developed Watershed-SV, a probabilistic model that integrates expression data with SV-specific genomic annotations, which significantly outperforms baseline models that don't incorporate expression data. Watershed-SV identified a median of eight high-confidence functional SVs per UDN genome. Notably, this included compound heterozygous deletions in FAM177A1 shared by two siblings, which were likely causal for a rare neurodevelopmental disorder. Our observations demonstrate the promise of integrating long-read sequencing with gene expression towards improving the prioritization of functional SVs and TREs in rare disease patients.

7.
Acta Neuropathol ; 147(1): 70, 2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598053

RESUMEN

The risk of developing Alzheimer's disease (AD) significantly increases in individuals carrying the APOEε4 allele. Elderly cognitively healthy individuals with APOEε4 also exist, suggesting the presence of cellular mechanisms that counteract the pathological effects of APOEε4; however, these mechanisms are unknown. We hypothesized that APOEε4 carriers without dementia might carry genetic variations that could protect them from developing APOEε4-mediated AD pathology. To test this, we leveraged whole-genome sequencing (WGS) data in the National Institute on Aging Alzheimer's Disease Family Based Study (NIA-AD FBS), Washington Heights/Inwood Columbia Aging Project (WHICAP), and Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA) cohorts and identified potentially protective variants segregating exclusively among unaffected APOEε4 carriers. In homozygous unaffected carriers above 70 years old, we identified 510 rare coding variants. Pathway analysis of the genes harboring these variants showed significant enrichment in extracellular matrix (ECM)-related processes, suggesting protective effects of functional modifications in ECM proteins. We prioritized two genes that were highly represented in the ECM-related gene ontology terms, (FN1) and collagen type VI alpha 2 chain (COL6A2) and are known to be expressed at the blood-brain barrier (BBB), for postmortem validation and in vivo functional studies. An independent analysis in a large cohort of 7185 APOEε4 homozygous carriers found that rs140926439 variant in FN1 was protective of AD (OR = 0.29; 95% CI [0.11, 0.78], P = 0.014) and delayed age at onset of disease by 3.37 years (95% CI [0.42, 6.32], P = 0.025). The FN1 and COL6A2 protein levels were increased at the BBB in APOEε4 carriers with AD. Brain expression of cognitively unaffected homozygous APOEε4 carriers had significantly lower FN1 deposition and less reactive gliosis compared to homozygous APOEε4 carriers with AD, suggesting that FN1 might be a downstream driver of APOEε4-mediated AD-related pathology and cognitive decline. To validate our findings, we used zebrafish models with loss-of-function (LOF) mutations in fn1b-the ortholog for human FN1. We found that fibronectin LOF reduced gliosis, enhanced gliovascular remodeling, and potentiated the microglial response, suggesting that pathological accumulation of FN1 could impair toxic protein clearance, which is ameliorated with FN1 LOF. Our study suggests that vascular deposition of FN1 is related to the pathogenicity of APOEε4, and LOF variants in FN1 may reduce APOEε4-related AD risk, providing novel clues to potential therapeutic interventions targeting the ECM to mitigate AD risk.


Asunto(s)
Enfermedad de Alzheimer , Fibronectinas , Anciano , Animales , Humanos , Enfermedad de Alzheimer/genética , Fibronectinas/genética , Variación Genética/genética , Gliosis , Pez Cebra
8.
Nat Neurosci ; 27(5): 873-885, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38539014

RESUMEN

Human genetics implicate defective myeloid responses in the development of late-onset Alzheimer disease. A decline in peripheral and brain myeloid metabolism, triggering maladaptive immune responses, is a feature of aging. The role of TREM1, a pro-inflammatory factor, in neurodegenerative diseases is unclear. Here we show that Trem1 deficiency prevents age-dependent changes in myeloid metabolism, inflammation and hippocampal memory function in mice. Trem1 deficiency rescues age-associated declines in ribose 5-phosphate. In vitro, Trem1-deficient microglia are resistant to amyloid-ß42 oligomer-induced bioenergetic changes, suggesting that amyloid-ß42 oligomer stimulation disrupts homeostatic microglial metabolism and immune function via TREM1. In the 5XFAD mouse model, Trem1 haploinsufficiency prevents spatial memory loss, preserves homeostatic microglial morphology, and reduces neuritic dystrophy and changes in the disease-associated microglial transcriptomic signature. In aging APPSwe mice, Trem1 deficiency prevents hippocampal memory decline while restoring synaptic mitochondrial function and cerebral glucose uptake. In postmortem Alzheimer disease brain, TREM1 colocalizes with Iba1+ cells around amyloid plaques and its expression is associated with Alzheimer disease clinical and neuropathological severity. Our results suggest that TREM1 promotes cognitive decline in aging and in the context of amyloid pathology.


Asunto(s)
Envejecimiento , Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Metabolismo Energético , Microglía , Receptor Activador Expresado en Células Mieloides 1 , Animales , Ratones , Envejecimiento/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Cognición/fisiología , Metabolismo Energético/fisiología , Hipocampo/metabolismo , Hipocampo/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/metabolismo , Receptor Activador Expresado en Células Mieloides 1/metabolismo , Receptor Activador Expresado en Células Mieloides 1/genética
9.
Neuron ; 112(7): 1110-1116.e5, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38301647

RESUMEN

The ε4 allele of apolipoprotein E (APOE) is the strongest genetic risk factor for sporadic Alzheimer's disease (AD). Knockdown of ε4 may provide a therapeutic strategy for AD, but the effect of APOE loss of function (LoF) on AD pathogenesis is unknown. We searched for APOE LoF variants in a large cohort of controls and patients with AD and identified seven heterozygote carriers of APOE LoF variants. Five carriers were controls (aged 71-90 years), one carrier was affected by progressive supranuclear palsy, and one carrier was affected by AD with an unremarkable age at onset of 75 years. Two APOE ε3/ε4 controls carried a stop-gain affecting ε4: one was cognitively normal at 90 years and had no neuritic plaques at autopsy; the other was cognitively healthy at 79 years, and lumbar puncture at 76 years showed normal levels of amyloid. These results suggest that ε4 drives AD risk through the gain of abnormal function and support ε4 knockdown as a viable therapeutic option.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Alelos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Genotipo , Longevidad/genética
10.
J Alzheimers Dis ; 97(2): 567-572, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38250779

RESUMEN

With the FDA approval of aducanumab and lecanemab, and with the recent statistically significant phase 3 clinical trial for donanemab, there is growing enthusiasm for anti-amyloid antibodies in the treatment of Alzheimer's disease. Here, we discuss three substantial limitations regarding recent anti-amyloid clinical trials: 1) there is little evidence that amyloid reduction correlates with clinical outcome, 2) the reported efficacy of anti-amyloid therapies may be explained by functional unblinding, and 3) donanemab had no effect on tau burden in its phase 3 trial. Taken together, these observations call into question the efficacy of anti-amyloid therapies.


Asunto(s)
Enfermedad de Alzheimer , Proteínas Amiloidogénicas , Anticuerpos Monoclonales Humanizados , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Emociones
11.
Ann Neurol ; 95(4): 625-634, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38180638

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disorder and one of the leading causes of disability worldwide. The apolipoprotein E4 gene (APOE4) is the strongest genetic risk factor for AD. In 2023, the APOE4 National Institute on Aging/Alzheimer's Disease Sequencing Project working group came together to gather data and discuss the question of whether to reduce or increase APOE4 as a therapeutic intervention for AD. It was the unanimous consensus that cumulative data from multiple studies in humans and animal models support that lowering APOE4 should be a target for therapeutic approaches for APOE4 carriers. ANN NEUROL 2024;95:625-634.


Asunto(s)
Enfermedad de Alzheimer , Animales , Estados Unidos , Humanos , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/tratamiento farmacológico , Apolipoproteína E4/genética , Objetivos , National Institute on Aging (U.S.)
12.
Mol Neurodegener ; 19(1): 1, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172904

RESUMEN

Triggering receptor expressed on myeloid cells 2 (TREM2) plays a critical role in microglial activation, survival, and apoptosis, as well as in Alzheimer's disease (AD) pathogenesis. We previously reported the MS4A locus as a key modulator for soluble TREM2 (sTREM2) in cerebrospinal fluid (CSF). To identify additional novel genetic modifiers of sTREM2, we performed the largest genome-wide association study (GWAS) and identified four loci for CSF sTREM2 in 3,350 individuals of European ancestry. Through multi-ethnic fine mapping, we identified two independent missense variants (p.M178V in MS4A4A and p.A112T in MS4A6A) that drive the association in MS4A locus and showed an epistatic effect for sTREM2 levels and AD risk. The novel TREM2 locus on chr 6 contains two rare missense variants (rs75932628 p.R47H, P=7.16×10-19; rs142232675 p.D87N, P=2.71×10-10) associated with sTREM2 and AD risk. The third novel locus in the TGFBR2 and RBMS3 gene region (rs73823326, P=3.86×10-9) included a regulatory variant with a microglia-specific chromatin loop for the promoter of TGFBR2. Using cell-based assays we demonstrate that overexpression and knock-down of TGFBR2, but not RBMS3, leads to significant changes of sTREM2. The last novel locus is located on the APOE region (rs11666329, P=2.52×10-8), but we demonstrated that this signal was independent of APOE genotype. This signal colocalized with cis-eQTL of NECTIN2 in the brain cortex and cis-pQTL of NECTIN2 in CSF. Overexpression of NECTIN2 led to an increase of sTREM2 supporting the genetic findings. To our knowledge, this is the largest study to date aimed at identifying genetic modifiers of CSF sTREM2. This study provided novel insights into the MS4A and TREM2 loci, two well-known AD risk genes, and identified TGFBR2 and NECTIN2 as additional modulators involved in TREM2 biology.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Estudio de Asociación del Genoma Completo , Microglía/patología , Apolipoproteínas E/genética , Biomarcadores/líquido cefalorraquídeo , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA