Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(6): e0270747, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35767598

RESUMEN

The rapid invasion of Drosophila suzukii (Matsumura) throughout Europe and the Americas has led to an increased reliance on calendar-based broad-spectrum insecticide programs among berry and cherry growers. Relatively few active ingredients (AIs) are currently available for effective D. suzukii management, and studies from multiple growing regions indicate that susceptibility to at least some of these materials is declining. Greater effort is needed to understand the status of susceptibility across field populations and the potential for increased resistance to develop, as well as the possible fitness costs incurred by resistant individuals. However, current bioassay protocols used for resistance monitoring and selection studies (i.e. resistance risk assessments) are labor-intensive and costly, making large-scale studies difficult to conduct. Here, we first present a novel bioassay protocol using larvae that requires little effort or cost to implement beyond what is needed for basic D. suzukii laboratory colony maintenance. We then perform dose-response bioassays using this protocol to identify larval lethal concentrations for three commonly used insecticides (malathion, spinosad and zeta-cypermethrin) in a susceptible population. Finally, resistance risk assessments were conducted using a population of D. suzukii from commercial caneberry fields near Watsonville, CA. We find that five generations of larval selection with a discriminating dose is sufficient to significantly increase both larval (malathion and spinosad) and adult (spinosad) resistance to the target AIs. This approach provides a simple, cost-effective tool for assaying susceptibility of D. suzukii populations to insecticides and for selecting resistant insect lines for resistance management research.


Asunto(s)
Resistencia a los Insecticidas , Insecticidas , Animales , Bioensayo , Drosophila , Control de Insectos/métodos , Insecticidas/farmacología , Larva , Malatión/farmacología
2.
J Econ Entomol ; 115(4): 1046-1053, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35296902

RESUMEN

Drosophila suzukii (Matsumura) has spread rapidly, challenging berry and cherry crop production due to its ability to lay eggs into ripening fruit. To prevent infestation by this pest, insecticides are applied during fruit ripening and harvest. We field-tested the Rapid Assessment Protocol for IDentification of resistance in D. suzukii (RAPID) on seventy-eight populations collected across eight U.S. states in 2017 and 2018. Exposure to LC50 rates of malathion, methomyl, spinetoram, spinosad, and zeta-cypermethrin led to average female fly mortality of 25.0% in 2017, and after adjusting concentrations the average was 39.9% in 2018. Using LC99 × 2 discriminating concentrations in 2017 and LC90 × 8 rates in 2018, average female mortalities were 93.3% and 98.5%, respectively, indicating high overall susceptibility. However, using these high concentrations we found 32.0% of assays with survival of some female flies in 2017 and 27.8% in 2018. The adjustment in discriminating dose from 2017 to 2018 also reduced the proportion of assays with <90% survival from 17.6 to 2.9%. Populations with low mortality when exposed to spinosad were identified using this assay, triggering more detailed follow-up bioassays that identified resistant populations collected in California coastal region berry crops. Widespread evaluations of this method and subsequent validation in California, Michigan, and Georgia in 2019-2021 show that it provides a quick and low-cost method to identify populations of D. suzukii that warrant more detailed testing. Our results also provide evidence that important insecticide classes remain effective in most U.S. regions of fruit production.


Asunto(s)
Insecticidas , Animales , Productos Agrícolas , Drosophila , Femenino , Frutas , Control de Insectos/métodos , Insecticidas/farmacología , Malatión/farmacología , Metomil/farmacología , Estados Unidos
3.
J Econ Entomol ; 115(4): 972-980, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35137165

RESUMEN

Spinosyn insecticides are widely used in conventional berry production, and spinosad is regarded as the most effective insecticide for managing Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), spotted-wing drosophila, in organic berry crops. Following the 2017 identification of spinosad resistance in caneberry fields in the Watsonville area, Santa Cruz Co., California, we conducted a study to examine the seasonal and annual susceptibility of D. suzukii over a three-year period. Adult flies were collected from two conventional and two organic caneberry fields in the Monterey Bay region, California, at 'early', 'middle', and 'late' time points during the 2018-2020 growing seasons, and their susceptibility to spinosad was assessed. Results demonstrated that spinosad susceptibility in the D. suzukii field populations generally decreased during the fruit production season (from June through November), and over consecutive seasons. LC50 values of adults from the conventional sites were determined to be as high as 228.7 mg l-1 in 2018, 665.6 mg l-1 in 2019, and 2700.8 mg l-1 in 2020. For the organically managed fields, LC50s of adults were as great as 300.0 mg l-1 in 2018, 1291.5 mg l-1 in 2019, and 2547.1 mg l-1 in 2020. Resistance ratios based on the LC50 values were as high as 10.7-, 13.2-, and 16.9-fold in 2018, 2019, and 2020, respectively. These results should serve as a caution for growers in other production areas, facilitate informed choice of insecticides used in D. suzukii management, and emphasize the need to develop effective insecticide resistance management strategies for this insect.


Asunto(s)
Drosophila , Insecticidas , Animales , California , Combinación de Medicamentos , Control de Insectos/métodos , Macrólidos
4.
Pest Manag Sci ; 75(5): 1270-1276, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30324771

RESUMEN

BACKGROUND: The bioinsecticide spinosad is among the most widely used insecticides for managing spotted-wing drosophila, Drosophila suzukii (Matsumura), and is critical for preventing fruit infestation in organic berry production. Recent reports, however, have raised concerns that the efficacy of this material is declining in fields near Watsonville, CA, a major hub of commercial berry production in the USA and the first location where D. suzukii was reported in North America. RESULTS: In this study, we performed dose-response analyses on D. suzukii from commercial raspberry plantings near Watsonville as well as a second untreated site in California using a widely implemented bioassay protocol. We found that Watsonville flies exhibited spinosad LC50 values 4.3-7.7 times higher than those from the untreated location and 11.6-22.4 times higher than previously reported susceptible baselines. Additionally, tolerance to spinosad continued to increase after additional selection for five generations, though this result was only statistically significant after prolonged exposure to residues. CONCLUSIONS: These findings confirm that spinosad resistance is emerging in the Watsonville area and document the first known occurrence in the USA, presenting an urgent need for the development of alternative management strategies to control this pest. Additional work is needed to resolve the underlying molecular mechanism(s) that confers spinosad resistance in D. suzukii and assess the potential for this trait to spread into new populations. © 2018 Society of Chemical Industry.


Asunto(s)
Drosophila , Resistencia a Medicamentos , Insecticidas , Macrólidos , Animales , Relación Dosis-Respuesta a Droga , Combinación de Medicamentos , Fenotipo , Medición de Riesgo
5.
Proc Biol Sci ; 281(1774): 20132164, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24225455

RESUMEN

Recent work suggests that the yellow dung fly mating system may include alternative patroller-competitor mating tactics in which large males compete for gravid females on dung, whereas small, non-competitive males search for females at foraging sites. Small males obtain most matings off pasture, yet the behavioural mechanism(s) giving rise to this pattern are unknown. We investigated the male and female behaviours that determine mating success in this environment by conducting field mating experiments and found small males to benefit from several attributes specific to the off-pasture mating environment. First, small males from foraging sites exhibited higher mating propensity, indicating that large males away from dung may be depleted of energy and/or sperm. Second, small males were more discriminating, being significantly less likely to attempt with non-gravid females, which are absent on dung but common off pasture. Third, non-gravid females were generally more likely to actively struggle and reject mating attempts; however, such behaviours occurred disproportionately more often with large males. Female Scathophaga stercoraria thus appear to preferentially mate with small males when off pasture. These findings challenge assumptions about male-female interactions in systems with alternative mating tactics and reveal hidden processes that may influence selection patterns in the field.


Asunto(s)
Dípteros/fisiología , Conducta Sexual Animal , Animales , Tamaño Corporal , Dípteros/anatomía & histología , Ambiente , Femenino , Masculino , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA