Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Radiat Res ; 201(2): 140-149, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38214379

RESUMEN

High-linear energy transfer (LET) radiation, such as heavy ions is associated with a higher relative biological effectiveness (RBE) than low-LET radiation, such as photons. Irradiation with low- and high-LET particles differ in the interaction with the cellular matter and therefore in the spatial dose distribution. When a single high-LET particle interacts with matter, it results in doses of up to thousands of gray (Gy) locally concentrated around the ion trajectory, whereas the mean dose averaged over the target, such as a cell nucleus is only in the range of a Gy. DNA damage therefore accumulates in this small volume. In contrast, up to hundreds of low-LET particle hits are required to achieve the same mean dose, resulting in a quasi-homogeneous damage distribution throughout the cell nucleus. In this study, we investigated the dependence of RBE from different spatial dose depositions using different focused beam spot sizes of proton radiation with respect to the induction of chromosome aberrations and clonogenic cell survival. Human-hamster hybrid (AL) as well as Chinese hamster ovary cells (CHO-K1) were irradiated with focused low LET protons of 20 MeV (LET = 2.6 keV/µm) beam energy with a mean dose of 1.7 Gy in a quadratic matrix pattern with point spacing of 5.4 × 5.4 µm2 and 117 protons per matrix point at the ion microbeam SNAKE using different beam spot sizes between 0.8 µm and 2.8 µm (full width at half maximum). The dose-response curves of X-ray reference radiation were used to determine the RBE after a 1.7 Gy dose of radiation. The RBE for the induction of dicentric chromosomes and cell inactivation was increased after irradiation with the smallest beam spot diameter (0.8 µm for chromosome aberration experiments and 1.0 µm for cell survival experiments) compared to homogeneous proton radiation but was still below the RBE of a corresponding high LET single ion hit. By increasing the spot size to 1.6-1.8 µm, the RBE decreased but was still higher than for homogeneously distributed protons. By further increasing the spot size to 2.7-2.8 µm, the RBE was no longer different from the homogeneous radiation. Our experiments demonstrate that varying spot size of low-LET radiation gradually modifies the RBE. This underlines that a substantial fraction of enhanced RBE originates from inhomogeneous energy concentrations on the µm scale (mean intertrack distances of low-LET particles below 0.1 µm) and quantifies the link between such energy concentration and RBE. The missing fraction of RBE enhancement when comparing with high-LET ions is attributed to the high inner track energy deposition on the nanometer scale. The results are compared with model results of PARTRAC and LEM for chromosomal aberration and cell survival, respectively, which suggest mechanistic interpretations of the observed radiation effects.


Asunto(s)
Protones , Cricetinae , Humanos , Animales , Efectividad Biológica Relativa , Células CHO , Cricetulus , Relación Dosis-Respuesta en la Radiación , Iones
2.
Radiat Prot Dosimetry ; 183(1-2): 40-44, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30726972

RESUMEN

The biophysical simulation tool PARTRAC contains modules for DNA damage response representing non-homologous end joining of DNA double-strand breaks (DSB) and the formation of chromosomal aberrations. Individual DNA ends from the induced DSB are followed regarding both their enzymatic processing and spatial mobility, as is needed for chromosome aberrations to arise via ligating broken ends from different chromosomes. In particular, by tracking the genomic locations of the ligated fragments and the positions of centromeres, the induction of dicentrics can be modeled. In recent experiments, the impact of spatial clustering of DNA damage on dicentric yields has been assessed in AL human-hamster hybrid cells: Defined numbers of 20 MeV protons (linear energy transfer, LET 2.6 keV/µm), 45 MeV Li ions (60 keV/µm) and 55 MeV C ions (310 keV/µm) focused to sub-µm spot sizes were applied with the ion microbeam SNAKE in diverse grid modes, keeping the absorbed dose constant. The impact of the µm-scaled spatial distribution of DSB (focusing effect) has thus been separated from nm-scaled DSB complexity (LET effect). The data provide a unique benchmark for the model calculations. Model and parameter refinements are described that enabled the simulations to largely reproduce both the LET-dependence and the focusing effect as well as the usual biphasic rejoining kinetics. The predictive power of the refined model has been benchmarked against dicentric yields for photon irradiation.


Asunto(s)
Aberraciones Cromosómicas/efectos de la radiación , Roturas del ADN de Doble Cadena/efectos de la radiación , Células Híbridas/efectos de la radiación , Linfocitos/efectos de la radiación , Animales , Cricetinae , Humanos , Células Híbridas/citología , Transferencia Lineal de Energía , Modelos Teóricos , Método de Montecarlo , Protones , Efectividad Biológica Relativa
3.
Radiat Environ Biophys ; 56(1): 79-87, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28144741

RESUMEN

The relative biological effectiveness (RBE) based on the induction of dicentrics in any cell type is principally an important information for the increasing application of high-LET radiation in cancer therapy. Since the standard system of human lymphocytes for measuring dicentrics are not compatible with our microbeam irradiation setup where attaching cells are essential, we used human-hamster hybrid AL cells which do attach on foils and fulfil the special experimental requirement for microbeam irradiations. In this work, the dose-response of AL cells to photons of different energy, 70 and 200 kV X-rays and 60Co γ-rays, is characterized and compared to human lymphocytes. The total number of induced dicentrics in AL cells is approximately one order of magnitude smaller. Despite the smaller α and ß parameters of the measured linear-quadratic dose-response relationship, the α/ß-ratio versus photon energy dependence is identical within the accuracy of measurement for AL cells and human lymphocytes. Thus, the influence of the reference radiation used for RBE determination is the same. For therapy relevant doses of 2 Gy (60Co equivalent), the difference in RBE is around 20% only. These findings indicate that the biological effectiveness in AL cells can give important information for human cells, especially for studies where attaching cells are essential.


Asunto(s)
Células Híbridas/efectos de la radiación , Transferencia Lineal de Energía , Linfocitos/efectos de la radiación , Fotones , Animales , Células CHO , Cricetinae , Cricetulus , Humanos , Células Híbridas/citología , Espacio Intracelular/efectos de la radiación , Linfocitos/citología , Estándares de Referencia , Efectividad Biológica Relativa
4.
Artículo en Inglés | MEDLINE | ID: mdl-26520370

RESUMEN

In conventional experiments on biological effects of radiation types of diverse quality, micrometer-scale double-strand break (DSB) clustering is inherently interlinked with clustering of energy deposition events on nanometer scale relevant for DSB induction. Due to this limitation, the role of the micrometer and nanometer scales in diverse biological endpoints cannot be fully separated. To address this issue, hybrid human-hamster AL cells have been irradiated with 45MeV (60keV/µm) lithium ions or 20MeV (2.6keV/µm) protons quasi-homogeneously distributed or focused to 0.5×1µm(2) spots on regular matrix patterns (point distances up to 10.6×10.6µm), with pre-defined particle numbers per spot to provide the same mean dose of 1.7Gy. The yields of dicentrics and their distribution among cells have been scored. In parallel, track-structure based simulations of DSB induction and chromosome aberration formation with PARTRAC have been performed. The results show that the sub-micrometer beam focusing does not enhance DSB yields, but significantly affects the DSB distribution within the nucleus and increases the chance to form DSB pairs in close proximity, which may lead to increased yields of chromosome aberrations. Indeed, the experiments show that focusing 20 lithium ions or 451 protons per spot on a 10.6µm grid induces two or three times more dicentrics, respectively, than a quasi-homogenous irradiation. The simulations reproduce the data in part, but in part suggest more complex behavior such as saturation or overkill not seen in the experiments. The direct experimental demonstration that sub-micrometer clustering of DSB plays a critical role in the induction of dicentrics improves the knowledge on the mechanisms by which these lethal lesions arise, and indicates how the assumptions of the biophysical model could be improved. It also provides a better understanding of the increased biological effectiveness of high-LET radiation.


Asunto(s)
Cromosomas de los Mamíferos/efectos de la radiación , Roturas del ADN de Doble Cadena/efectos de la radiación , Animales , Células CHO , Aberraciones Cromosómicas , Cromosomas Humanos Par 11/efectos de la radiación , Cricetulus , Humanos , Litio , Modelos Genéticos , Modelos Teóricos , Protones , Efectividad Biológica Relativa
5.
Phys Med ; 31(6): 615-20, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25936621

RESUMEN

The risk of developing normal tissue injuries often limits the radiation dose that can be applied to the tumour in radiation therapy. Microbeam Radiation Therapy (MRT), a spatially fractionated photon radiotherapy is currently tested at the European Synchrotron Radiation Facility (ESRF) to improve normal tissue protection. MRT utilizes an array of microscopically thin and nearly parallel X-ray beams that are generated by a synchrotron. At the ion microprobe SNAKE in Munich focused proton microbeams ("proton microchannels") are studied to improve normal tissue protection. Here, we comparatively investigate microbeam/microchannel irradiations with sub-millimetre X-ray versus proton beams to minimize the risk of normal tissue damage in a human skin model, in vitro. Skin tissues were irradiated with a mean dose of 2 Gy over the irradiated area either with parallel synchrotron-generated X-ray beams at the ESRF or with 20 MeV protons at SNAKE using four different irradiation modes: homogeneous field, parallel lines and microchannel applications using two different channel sizes. Normal tissue viability as determined in an MTT test was significantly higher after proton or X-ray microchannel irradiation compared to a homogeneous field irradiation. In line with these findings genetic damage, as determined by the measurement of micronuclei in keratinocytes, was significantly reduced after proton or X-ray microchannel compared to a homogeneous field irradiation. Our data show that skin irradiation using either X-ray or proton microchannels maintain a higher cell viability and DNA integrity compared to a homogeneous irradiation, and thus might improve normal tissue protection after radiation therapy.


Asunto(s)
Fraccionamiento de la Dosis de Radiación , Traumatismos por Radiación/prevención & control , Protección Radiológica/métodos , Radioterapia de Alta Energía/efectos adversos , Piel/lesiones , Piel/efectos de la radiación , Animales , Materiales Biomiméticos/efectos de la radiación , Diseño de Equipo , Medicina Basada en la Evidencia , Humanos , Tratamientos Conservadores del Órgano/métodos , Terapia de Protones/efectos adversos , Protones , Traumatismos por Radiación/etiología , Valores de Referencia , Piel/patología , Sincrotrones , Evaluación de la Tecnología Biomédica , Resultado del Tratamiento
6.
Radiat Environ Biophys ; 54(1): 71-79, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25572031

RESUMEN

Radiochromic films such as Gafchromic EBT2 or EBT3 films are widely used for dose determination in radiation therapy because they offer a superior spatial resolution compared to any other digital dosimetric 2D detector array. The possibility to detect steep dose gradients is not only attractive for intensity-modulated radiation therapy with photons but also for intensity-modulated proton therapy. Their characteristic dose rate-independent response makes radiochromic films also attractive for dose determination in cell irradiation experiments using laser-driven ion accelerators, which are currently being investigated as future medical ion accelerators. However, when using these films in ion beams, the energy-dependent dose response in the vicinity of the Bragg peak has to be considered. In this work, the response of these films for low-energy protons is investigated. To allow for reproducible and background-free irradiation conditions, the films were exposed to mono-energetic protons from an electrostatic accelerator, in the 4-20 MeV energy range. For comparison, irradiation with clinical photons was also performed. It turned out that in general, EBT2 and EBT3 films show a comparable performance. For example, dose-response curves for photons and protons with energies as low as 11 MeV show almost no differences. However, corrections are required for proton energies below 11 MeV. Care has to be taken when correction factors are related to an average LET from depth-dose measurements, because only the dose-averaged LET yields similar results as obtained in mono-energetic measurements.


Asunto(s)
Dosimetría por Película/instrumentación , Protones , Fotones
7.
Radiat Res ; 181(2): 177-83, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24524347

RESUMEN

The new technology of laser-driven ion acceleration (LDA) has shown the potential for driving highly brilliant particle beams. Laser-driven ion acceleration differs from conventional proton sources by its ultra-high dose rate, whose radiobiological impact should be investigated thoroughly before adopting current clinical dose concepts. The growth of human FaDu tumors transplanted onto the hind leg of nude mice was measured sonographically. Tumors were irradiated with 20 Gy of 23 MeV protons at pulsed mode with single pulses of 1 ns duration or continuous mode (∼100 ms) in comparison to controls and to a dose-response curve for 6 MV photons. Tumor growth delay and the relative biological effectiveness (RBE) were calculated for all irradiation modes. The mean target dose reconstructed from Gafchromic films was 17.4 ± 0.8 Gy for the pulsed and 19.7 ± 1.1 Gy for the continuous irradiation mode. The mean tumor growth delay was 34 ± 6 days for pulsed, 35 ± 6 days for continuous protons, and 31 ± 7 days for photons 20 ± 1.2 Gy, resulting in RBEs of 1.22 ± 0.19 for pulsed and 1.10 ± 0.18 for continuous protons, respectively. In summary, protons were found to be significantly more effective in reducing the tumor volume than photons (P < 0.05). Together with the results of previous in vitro experiments, the in vivo data reveal no evidence for a substantially different radiobiology that is associated with the ultra-high dose rate of protons that might be generated from advanced laser technology in the future.


Asunto(s)
Terapia de Protones , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Femenino , Humanos , Ratones , Ratones Desnudos , Efectividad Biológica Relativa , Factores de Tiempo , Carga Tumoral/efectos de la radiación
8.
Sci Rep ; 3: 2511, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23979012

RESUMEN

The mobility of damaged chromatin regions in the nucleus may affect the probability of mis-repair. In this work, live-cell observation and distance tracking of GFP-tagged DNA damage response protein MDC1 was used to study the random-walk behaviour of chromatin domains containing radiation-induced DNA double-strand breaks (DSB). Our measurements indicate a subdiffusion-type random walk process with similar time dependence for isolated and clustered DSBs that were induced by 20 MeV proton or 43 MeV carbon ion micro-irradiation. As compared to normal diffusion, subdiffusion enhances the probability that both ends of a DSB meet, thus promoting high efficiency DNA repair. It also limits their probability of long-range movements and thus lowers the probability of mis-rejoining and chromosome aberrations.


Asunto(s)
Cromatina/química , Daño del ADN/genética , Reparación del ADN/genética , ADN de Neoplasias/química , ADN de Neoplasias/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Transactivadores/química , Transactivadores/genética , Proteínas Adaptadoras Transductoras de Señales , Proteínas de Ciclo Celular , Línea Celular Tumoral , Cromatina/genética , Difusión , Humanos , Modelos Genéticos , Modelos Estadísticos , Osteosarcoma/química , Osteosarcoma/genética , Unión Proteica
9.
Phys Med Biol ; 57(19): 5889-907, 2012 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-22955045

RESUMEN

This study shows that enhanced radiobiological effectiveness (RBE) values can be generated focusing low linear energy transfer (LET) radiation and thus changing the microdose distribution. 20 MeV protons (LET = 2.65 keV µm(-1)) are focused to submicrometer diameter at the ion microprobe superconducting nanoprobe for applied nuclear (Kern) physics experiments of the Munich tandem accelerator. The RBE values, as determined by measuring micronuclei (RBE(MN) = 1.48 ± 0.07) and dicentrics (RBE(D) = 1.92 ± 0.15), in human-hamster hybrid (A(L)) cells are significantly higher when 117 protons were focused to a submicrometer irradiation field within a 5.4 × 5.4 µm(2) matrix compared to quasi homogeneous in a 1 × 1 µm(2) matrix applied protons (RBE(MN) = 1.28 ± 0.07; RBE(D) = 1.41 ± 0.14) at the same average dose of 1.7 Gy. The RBE values are normalized to standard 70 kV (dicentrics) or 200 kV (micronuclei) x-ray irradiation. The 117 protons applied per point deposit the same amount of energy like a (12)C ion with 55 MeV total energy (4.48 MeV u(-1)). The enhancements are about half of that obtained for (12)C ions (RBE(MN) = 2.20 ± 0.06 and RBE(D) = 3.21 ± 0.10) and they are attributed to intertrack interactions of the induced damages. The measured RBE values show differences from predictions of the local effect model (LEM III) that is used to calculate RBE values for irradiation plans to treat tumors with high LET particles.


Asunto(s)
Transferencia Lineal de Energía , Terapia de Protones , Animales , Células CHO , Cricetinae , Cricetulus , Histonas/metabolismo , Humanos , Efectividad Biológica Relativa
10.
Radiat Environ Biophys ; 51(1): 23-32, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22228542

RESUMEN

In particle tumor therapy including beam scanning at accelerators, the dose per voxel is delivered within about 100 ms. In contrast, the new technology of laser plasma acceleration will produce ultimately shorter particle packages that deliver the dose within a nanosecond. Here, possible differences for relative biological effectiveness in creating DNA double-strand breaks in pulsed or continuous irradiation mode are studied. HeLa cells were irradiated with 1 or 5 Gy of 20-MeV protons at the Munich tandem accelerator, either at continuous mode (100 ms), or applying a single pulse of 1-ns duration. Cells were fixed 1 h after 1-Gy irradiation and 24 h after 5-Gy irradiation, respectively. A dose-effect curve based on five doses of X-rays was taken as reference. The total number of phosphorylated histone H2AX (gamma-H2AX) foci per cell was determined using a custom-made software macro for gamma-H2AX foci counting. For 1 h after 1-Gy 20-MeV proton exposures, values for the relative biological effectiveness (RBE) of 0.97 ± 0.19 for pulsed and 1.13 ± 0.21 for continuous irradiations were obtained in the first experiment 1.13 ± 0.09 and 1.16 ± 0.09 in the second experiment. After 5 Gy and 24 h, RBE values of 0.99 ± 0.29 and 0.91 ± 0.23 were calculated, respectively. Based on the gamma-H2AX foci numbers obtained, no significant differences in RBE between pulsed and continuous proton irradiation in HeLa cells were detected. These results are well in line with our data on micronucleus induction in HeLa cells.


Asunto(s)
Roturas del ADN de Doble Cadena , Histonas/metabolismo , Protones/efectos adversos , Rayos X/efectos adversos , Reparación del ADN , Relación Dosis-Respuesta en la Radiación , Células HeLa , Humanos
11.
Radiat Res ; 175(6): 719-27, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21438661

RESUMEN

Laser accelerated radiotherapy is a potential cancer treatment with proton and carbon-ion beams that is currently under development. Ultra-fast high-energy laser pulses will accelerate ion beams that deliver their dose to a patient in a "pulsed mode" that is expected to differ from conventional irradiation by increasing the dose delivery rate to a tissue voxel by approximately 8 orders of magnitude. In two independently performed experiments at the ion microprobe SNAKE of the 14 MV Munich tandem accelerator, A(L) cells were exposed either to protons with 1-ns pulse durations or to protons applied over 150 ms in continuous irradiation mode. A slightly but consistently lower aberration yield was observed for the pulsed compared to the continuous mode of proton irradiation. This difference was not statistically significant when each aberration type was analyzed separately (P values between 0.61 and 0.85 in experiment I and P values between 0.32 and 0.64 in experiment II). However, excluding the total aberrations, which were not analyzed as independent radiation-induced effects, the mean ratio of the yields of dicentrics, centric rings and excess acentrics scored together showed (with 95% CI) a significant difference of 0.90 (0.81; 0.98) between the pulsed and the continuous irradiation modes. A similar tendency was also determined for the corresponding RBE values relative to 70 kV X rays. Since the different findings for the comparisons of individual chromosome aberration types and combined comparisons could be explained by different sample sizes with the consequence that the individual comparisons had less statistical power to identify a difference, it can be concluded that 20 MeV protons may be slightly less effective in the pulsed mode.


Asunto(s)
Aberraciones Cromosómicas , Protones , Animales , Línea Celular , Cricetinae , Relación Dosis-Respuesta en la Radiación , Humanos , Células Híbridas , Micronúcleos con Defecto Cromosómico , Neoplasias/radioterapia , Efectividad Biológica Relativa , Rayos X
12.
Radiat Res ; 172(5): 567-74, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19883224

RESUMEN

To obtain greater insight into the future potential of tumor radiotherapy using proton beams generated from high-intensity lasers, it is important to characterize the ionization quality of the new beams by measuring the relative biological effectiveness (RBE) under conditions where the full dose at one irradiation site will be deposited by a few proton pulses less than 1 ns in duration. HeLa cells attached to a Mylar foil were irradiated with 70 kV X rays to obtain a reference dose-response curve or with 3 Gy of 20 MeV protons at the Munich tandem accelerator (Garching), either using a continuous mode where a cell sample was irradiated within a 100-ms time span or using a pulsed mode where radiation was given in a single proton pulse of about 1 ns. After irradiation cytochalasin B was added; 24 h later cells were fixed and stained with acridine orange and micronuclei were counted. The X-ray dose-response curve for the production of micronuclei in HeLa cells followed a linear-quadratic model. The corresponding RBE values for 20 MeV protons in pulsed and continuous irradiation modes were 1.07 +/- 0.08 and 1.06 +/- 0.10 in the first proton experiment and 1.09 +/- 0.08 and 1.05 +/- 0.11 in the second, respectively. There was no evidence for a difference in the RBE for pulsed and continuous irradiation of HeLa cells with 20 MeV protons.


Asunto(s)
Protones , Relación Dosis-Respuesta en la Radiación , Células HeLa , Humanos , Cariotipificación
13.
Radiat Prot Dosimetry ; 122(1-4): 147-9, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17132661

RESUMEN

A simple model of homogenous chromatin distribution in HeLa-cell nuclei suggests that the track of an energetic ion hits 30 nm chromatin fibers with a mean distance of 0.55 mum. To test this assumption, living HeLa-cells were irradiated at the irradiation setup of the ion microprobe SNAKE using the ion beams provided by the Munich 14 MV tandem accelerator. After irradiation, the distribution of 53BP1 protein foci was studied by immunofluorescence. The observed 53BP1 distribution along the tracks of 29 MeV (7)Li ions and 24 MeV (12)C ions differed significantly from the expectations resulting from the simple chromatin model, suggesting that the biological track structure is determined by cell nuclear architecture with higher order organisation of chromatin.


Asunto(s)
Cromatina/química , Cromatina/efectos de la radiación , Daño del ADN , Reparación del ADN/efectos de la radiación , Proteínas de Unión al ADN/química , ADN/química , ADN/efectos de la radiación , Simulación por Computador , Proteínas de Unión al ADN/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Células HeLa , Iones Pesados , Humanos , Transferencia Lineal de Energía , Modelos Químicos , Modelos Moleculares , Dosis de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...