Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Pharmacol ; 103(3): 145-157, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36414374

RESUMEN

Despite the progress made in the development of new antiepileptic drugs (AEDs), poor response to them is a rising concern in epilepsy treatment. Of several hypotheses explaining AED treatment failure, the most promising theory is the overexpression of multidrug transporters belonging to ATP-binding cassette (ABC) transporter family at blood-brain barrier. Previous data show that AEDs themselves can induce these transporters, in turn affecting their own brain bioavailability. Presently, this induction and the underlying regulatory mechanism involved at human blood-brain barrier is not well elucidated. Herein, we sought to explore the effect of most prescribed first- and second-line AEDs on multidrug transporters in human cerebral microvascular endothelial cells, hCMEC/D3. Our work demonstrated that exposure of these cells to valproic acid (VPA) induced mRNA, protein, and functional activity of breast cancer resistance protein (BCRP/ABCG2). On examining the substrate interaction status of AEDs with BCRP, VPA, phenytoin, and lamotrigine were found to be potential BCRP substrates. Furthermore, we observed that siRNA-mediated knockdown of peroxisome proliferator-activated receptor alpha (PPARα) or use of PPARα antagonist, resulted in attenuation of VPA-induced BCRP expression and transporter activity. VPA was found to increase PPARα expression and trigger its translocation from cytoplasm to nucleus. Findings from chromatin immunoprecipitation and luciferase assays showed that VPA enhances the binding of PPARα to its response element in the ABCG2 promoter, resulting in elevated ABCG2 transcriptional activity. Taken together, these in vitro findings highlight PPARα as the potential molecular target to prevent VPA-mediated BCRP induction, which may have important implications in VPA pharmacoresistance. SIGNIFICANCE STATEMENT: Induction of multidrug transporters at blood-brain barrier can largely affect the bioavailability of the substrate antiepileptic drugs in the brains of patients with epilepsy, thus affecting their therapeutic efficacy. The present study reports a mechanistic pathway of breast cancer resistance protein (BCRP/ABCG2) upregulation by valproic acid in human brain endothelial cells via peroxisome proliferator-activated receptor alpha involvement, thereby providing a potential strategy to prevent valproic acid pharmacoresistance in epilepsy.


Asunto(s)
Neoplasias de la Mama , Epilepsia , Humanos , Femenino , PPAR alfa/metabolismo , Ácido Valproico/farmacología , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Anticonvulsivantes/farmacología , Regulación hacia Arriba , Células Endoteliales/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Encéfalo/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Epilepsia/tratamiento farmacológico , Epilepsia/metabolismo , Neoplasias de la Mama/metabolismo
2.
Cell Mol Life Sci ; 78(21-22): 6887-6939, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34586444

RESUMEN

The adenosine triphosphate (ATP)-binding cassette efflux transporter G2 (ABCG2) was originally discovered in a multidrug-resistant breast cancer cell line. Studies in the past have expanded the understanding of its role in physiology, disease pathology and drug resistance. With a widely distributed expression across different cell types, ABCG2 plays a central role in ATP-dependent efflux of a vast range of endogenous and exogenous molecules, thereby maintaining cellular homeostasis and providing tissue protection against xenobiotic insults. However, ABCG2 expression is subjected to alterations under various pathophysiological conditions such as inflammation, infection, tissue injury, disease pathology and in response to xenobiotics and endobiotics. These changes may interfere with the bioavailability of therapeutic substrate drugs conferring drug resistance and in certain cases worsen the pathophysiological state aggravating its severity. Considering the crucial role of ABCG2 in normal physiology, therapeutic interventions directly targeting the transporter function may produce serious side effects. Therefore, modulation of transporter regulation instead of inhibiting the transporter itself will allow subtle changes in ABCG2 activity. This requires a thorough comprehension of diverse factors and complex signaling pathways (Kinases, Wnt/ß-catenin, Sonic hedgehog) operating at multiple regulatory levels dictating ABCG2 expression and activity. This review features a background on the physiological role of transporter, factors that modulate ABCG2 levels and highlights various signaling pathways, molecular mechanisms and genetic polymorphisms in ABCG2 regulation. This understanding will aid in identifying potential molecular targets for therapeutic interventions to overcome ABCG2-mediated multidrug resistance (MDR) and to manage ABCG2-related pathophysiology.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Resistencia a Múltiples Medicamentos/genética , Resistencia a Antineoplásicos/genética , Animales , Humanos , Proteínas de Neoplasias/genética , Polimorfismo Genético/genética , Transducción de Señal/genética
3.
Molecules ; 22(10)2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-28961159

RESUMEN

ABC transporters have a significant role in drug disposition and response and various studies have implicated their involvement in epilepsy pharmacoresistance. Since genetic studies till now are inconclusive, we thought of investigating the role of xenobiotics as transcriptional modulators of ABC transporters. Here, we investigated the effect of six antiepileptic drugs (AEDs) viz. phenytoin, carbamazepine, valproate, lamotrigine, topiramate and levetiracetam, on the expression and function of ABCB1, ABCC1, ABCC2 and ABCG2 in Caco2 and HepG2 cell lines through real time PCR, western blot and functional activity assays. Further, the interaction of AEDs with maximally induced ABCC2 was studied. Carbamazepine caused a significant induction in expression of ABCB1 and ABCC2 in HepG2 and Caco2 cells, both at the transcript and protein level, together with increased functional activity. Valproate caused a significant increase in the expression and functional activity of ABCB1 in HepG2 only. No significant effect of phenytoin, lamotrigine, topiramate and levetiracetam on the transporters under study was observed in either of the cell lines. We demonstrated the interaction of carbamazepine and valproate with ABCC2 with ATPase and 5,6-carboxyfluorescein inhibition assays. Thus, altered functionality of ABCB1 and ABCC2 can affect the disposition and bioavailability of administered drugs, interfering with AED therapy.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Anticonvulsivantes/farmacología , Regulación de la Expresión Génica/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Fluoresceínas/metabolismo , Humanos , Activación del Canal Iónico/efectos de los fármacos , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Unión Proteica
4.
Molecules ; 22(3)2017 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-28264441

RESUMEN

Epilepsy is a neurological disorder affecting around 1%-2% of population worldwide and its treatment includes use of antiepileptic drugs to control seizures. Failure to respond to antiepileptic drug therapy is a major clinical problem and over expression of ATP-binding cassette transporters is considered one of the major reasons for pharmacoresistance. In this review, we have summarized the regulation of ABC transporters in response to oxidative stress due to disease and antiepileptic drugs. Further, ketogenic diet and antioxidants were examined for their role in pharmacoresistance. The understanding of signalling pathways and mechanism involved may help in identifying potential therapeutic targets and improving drug response.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Anticonvulsivantes/uso terapéutico , Resistencia a Medicamentos , Epilepsia/terapia , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Barrera Hematoencefálica/metabolismo , Terapia Combinada , Dieta Cetogénica/métodos , Resistencia a Medicamentos/efectos de los fármacos , Epilepsia/metabolismo , Humanos , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...