Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 34(6): 1161-1167.e3, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38325374

RESUMEN

Wood growth is key to understanding the feedback of forest ecosystems to the ongoing climate warming. An increase in spatial synchrony (i.e., coincident changes in distant populations) of spring phenology is one of the most prominent climate responses of forest trees. However, whether temperature variability contributes to an increase in the spatial synchrony of spring phenology and its underlying mechanisms remains largely unknown. Here, we analyzed an extensive dataset of xylem phenology observations of 20 conifer species from 75 sites over the Northern Hemisphere. Along the gradient of increase in temperature variability in the 75 sites, we observed a convergence in the onset of cell enlargement roughly toward the 5th of June, with a convergence in the onset of cell wall thickening toward the summer solstice. The increase in rainfall since the 5th of June is favorable for cell division and expansion, and as the most hours of sunlight are received around the summer solstice, it allows the optimization of carbon assimilation for cell wall thickening. Hence, the convergences can be considered as the result of matching xylem phenological activities to favorable conditions in regions with high temperature variability. Yet, forest trees relying on such consistent seasonal cues for xylem growth could constrain their ability to respond to climate warming, with consequences for the potential growing season length and, ultimately, forest productivity and survival in the future.


Asunto(s)
Tracheophyta , Temperatura , Ecosistema , Cambio Climático , Xilema , Estaciones del Año , Árboles
2.
Plant Cell Environ ; 47(4): 1285-1299, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38213092

RESUMEN

Using a unique 8-year data set (2010-2017) of phloem data, we studied the effect of temperature and precipitation on the phloem anatomy (conduit area, widths of ring, early and late phloem) and xylem-ring width in two coexisting temperate tree species, Picea abies and Fagus sylvatica, from three contrasting European temperate forest sites. Histometric analyses were performed on microcores taken from tree stems in autumn. We found high interannual variability and sensitivity of phloem anatomy and xylem-ring widths to precipitation and temperature; however, the responses were species- and site-specific. The contrasting response of xylem and phloem-ring widths of the same tree species to weather conditions was found at the two Slovenian sites generally well supplied with precipitation, while at the driest Czech site, the influence of weather factors on xylem and phloem ring widths was synchronised. Since widths of mean annual xylem and phloem increments were narrowest at the Czech site, this site is suggested to be most restrictive for the radial growth of both species. By influencing the seasonal patterns of xylem and phloem development, water availability appears to be the most important determinant of tissue- and species-specific responses to local weather conditions.


Asunto(s)
Abies , Fagus , Picea , Pinus , Picea/fisiología , Floema , Clima , Árboles/fisiología
3.
Plants (Basel) ; 12(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37653902

RESUMEN

The bark fulfils several essential functions in vascular plants and yields a wealth of raw materials, but the understanding of bark structure and function strongly lags behind our knowledge with respect to other plant tissues. The recent technological advances in sampling and preparation of barks for anatomical studies, along with the establishment of an agreed bark terminology, paved the way for more bark anatomical research. Whilst datasets reveal bark's taxonomic and functional diversity in various ecosystems, a better understanding of the bark can advance the understanding of plants' physiological and environmental challenges and solutions. We propose a set of priorities for understanding and further developing bark anatomical studies, including periderm structure in woody plants, phloem phenology, methods in bark anatomy research, bark functional ecology, relationships between bark macroscopic appearance, and its microscopic structure and discuss how to achieve these ambitious goals.

4.
Tree Physiol ; 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36917230

RESUMEN

Non-structural carbohydrates (NSCs) represent the primary carbon (C) reserves and play a crucial role for plant functioning and resilience. Indeed, these compounds are involved in the regulation between C supply and demand, and in the maintenance of hydraulic efficiency. NSCs are stored in parenchyma of woody organs, which is recognized as a proxy for reserve storage capacity of tree. Notwithstanding the importance of NSCs for tree physiology, their long-term regulation and trade-offs against growth were not deeply investigated. This work evaluated the long-term dynamics of mature tree reserves in stem and root, proxied by parenchyma features, and focusing on the trade off and interplay between the resources allocation in radial growth and reserves in stem and coarse root. In a Mediterranean beech forest, NSCs content, stem and root wood anatomy analysis, and eddy covariance data, were combined. The parenchyma fraction (RAP) of beech root and stem was different, due to differences in axial parenchyma (AP) and narrow ray parenchyma (nRP) fractions. However, these parenchyma components and radial growth showed synchronous inter-annual dynamics between the two organs. In beech stem, positive correlations were found among soluble sugars content and nRP, and among starch content and the AP. Positive correlations were found among Net Ecosystem Exchange (NEE) and AP of both organs. In contrast, NEE was negatively correlated to radial growth of root and stem. Our results suggest a different contribution of stem and roots to reserves storage, and a putative partitioning in the functional roles of parenchyma components. Moreover, a long-term trade-off of C allocation between growth and reserve pool was evidenced. Indeed, in case of C source reduction, trees preferentially allocate C towards reserves pool. Conversely, in high productive years, growth represents the major C sink.

5.
Glob Chang Biol ; 29(6): 1606-1617, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36451586

RESUMEN

Despite growing interest in predicting plant phenological shifts, advanced spring phenology by global climate change remains debated. Evidence documenting either small or large advancement of spring phenology to rising temperature over the spatio-temporal scales implies a potential existence of a thermal threshold in the responses of forests to global warming. We collected a unique data set of xylem cell-wall-thickening onset dates in 20 coniferous species covering a broad mean annual temperature (MAT) gradient (-3.05 to 22.9°C) across the Northern Hemisphere (latitudes 23°-66° N). Along the MAT gradient, we identified a threshold temperature (using segmented regression) of 4.9 ± 1.1°C, above which the response of xylem phenology to rising temperatures significantly decline. This threshold separates the Northern Hemisphere conifers into cold and warm thermal niches, with MAT and spring forcing being the primary drivers for the onset dates (estimated by linear and Bayesian mixed-effect models), respectively. The identified thermal threshold should be integrated into the Earth-System-Models for a better understanding of spring phenology in response to global warming and an improved prediction of global climate-carbon feedbacks.


Asunto(s)
Tracheophyta , Teorema de Bayes , Bosques , Frío , Temperatura , Cambio Climático , Estaciones del Año
6.
Front Plant Sci ; 13: 872950, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463439

RESUMEN

Environmental conditions affect tree-ring width (TRW), wood structure, and, consequently, wood density, which is one of the main wood quality indicators. Although studies on inter- and intra-annual variability in tree-ring features or density exist, studies demonstrating a clear link between wood structure on a cellular level and its effect on wood density on a macroscopic level are rare. Norway spruce with its simple coniferous structure and European beech, a diffuse-porous angiosperm species were selected to analyze these relationships. Increment cores were collected from both species at four sites in Slovenia. In total, 24 European beech and 17 Norway spruce trees were sampled. In addition, resistance drilling measurements were performed just a few centimeters above the increment core sampling. TRW and quantitative wood anatomy measurements were performed on the collected cores. Resistance drilling density values, tree-ring (TRW, earlywood width-EWW, transition-TWW, and latewood width-LWW) and wood-anatomical features (vessel/tracheid area and diameter, cell density, relative conductive area, and cell wall thickness) were then averaged for the first 7 cm of measurements. We observed significant relationships between tree-ring and wood-anatomical features in both spruce and beech. In spruce, the highest correlation values were found between TRW and LWW. In beech, the highest correlations were observed between TRW and cell density. There were no significant relationships between wood-anatomical features and resistance drilling density in beech. However, in spruce, a significant negative correlation was found between resistance drilling density and tangential tracheid diameter, and a positive correlation between resistance drilling density and both TWW + LWW and LWW. Our findings suggest that resistance drilling measurements can be used to evaluate differences in density within and between species, but they should be improved in resolution to be able to detect changes in wood anatomy.

7.
Commun Biol ; 5(1): 163, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35273334

RESUMEN

The growth of past, present, and future forests was, is and will be affected by climate variability. This multifaceted relationship has been assessed in several regional studies, but spatially resolved, large-scale analyses are largely missing so far. Here we estimate recent changes in growth of 5800 beech trees (Fagus sylvatica L.) from 324 sites, representing the full geographic and climatic range of species. Future growth trends were predicted considering state-of-the-art climate scenarios. The validated models indicate growth declines across large region of the distribution in recent decades, and project severe future growth declines ranging from -20% to more than -50% by 2090, depending on the region and climate change scenario (i.e. CMIP6 SSP1-2.6 and SSP5-8.5). Forecasted forest productivity losses are most striking towards the southern distribution limit of Fagus sylvatica, in regions where persisting atmospheric high-pressure systems are expected to increase drought severity. The projected 21st century growth changes across Europe indicate serious ecological and economic consequences that require immediate forest adaptation.


Asunto(s)
Fagus , Cambio Climático , Sequías , Bosques , Árboles
8.
Sci Total Environ ; 802: 149968, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34525737

RESUMEN

Increased frequency and severity of stressful events affects the growth patterns and functioning of trees which adjust their phenology to given conditions. Here, we analysed environmental effects (temperature, precipitation, VPD and SWC) on the timing of leaf phenology, seasonal stem radial growth patterns, and xylem and phloem anatomy of Quercus pubescens in the sub-Mediterranean in the period 2014-2019, when various adverse weather events occurred, i.e. spring drought in 2015, summer fire in 2016 and summer drought in 2017. Results showed that the timings of leaf and cambium phenology do not occur simultaneously in Q. pubescens, reflecting different environmental and internal constraints. Although year-to-year variability in the timings of leaf and cambial phenology exists, their chronological sequence is fairly fixed. Different effects of weather conditions on different stages of leaf development in spring were observed. Common climatic drivers (i.e., negative effect of hot and dry summers and a positive effect of increasing moisture availability in winter and summer) were found to affect the widths of xylem and phloem increments with more pronounced effect on late formed parts. A legacy effect of the timing of leaf and cambial phenology of the previous growing season on the timing of phenology of the following spring was confirmed. Rarely available phloem data permitted a comprehensive insight into the interlinkage of the timing of cambium and leaf phenology and adjustment strategies of vascular tissues in Mediterranean pubescent oak to various environmental constraints, including frequent extreme events (drought, fire). Our results suggest that predicted changes in autumn/winter and spring climatic conditions for this area could affect the timings of leaf and stem cambial phenology of Q. pubescens in the coming years, which would affect stem xylem and phloem structure and hydraulic properties, and ultimately its performance.


Asunto(s)
Quercus , Cámbium , Floema , Hojas de la Planta , Xilema
9.
Front Plant Sci ; 12: 698640, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34421949

RESUMEN

Understanding tree growth and carbon sequestration are of crucial interest to forecast the feedback of forests to climate change. To have a global understanding of the wood formation, it is necessary to develop new methodologies for xylogenesis measurements, valid across diverse wood structures and applicable to both angiosperms and gymnosperms. In this study, the authors present a new workflow to study xylogenesis using high-resolution X-ray computed tomography (HRXCT), which is generic and offers high potential for automatization. The HXRCT-based approach was benchmarked with the current classical approach (microtomy) on three tree species with contrasted wood anatomy (Pinus nigra, Fagus sylvatica, and Quercus robur). HRXCT proved to estimate the relevant xylogenesis parameters (timing, duration, and growth rates) across species with high accuracy. HRXCT showed to be an efficient avenue to investigate tree xylogenesis for a wide range of wood anatomies, structures, and species. HRXCT also showed its potential to provide quantification of intra-annual dynamics of biomass production through high-resolution 3D mapping of wood biomass within the forming growth ring.

10.
Front Plant Sci ; 12: 669229, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34381473

RESUMEN

European beech (Fagus sylvatica L.) adapts to local growing conditions to enhance its performance. In response to variations in climatic conditions, beech trees adjust leaf phenology, cambial phenology, and wood formation patterns, which result in different tree-ring widths (TRWs) and wood anatomy. Chronologies of tree ring width and vessel features [i.e., mean vessel area (MVA), vessel density (VD), and relative conductive area (RCTA)] were produced for the 1960-2016 period for three sites that differ in climatic regimes and spring leaf phenology (two early- and one late-flushing populations). These data were used to investigate long-term relationships between climatic conditions and anatomical features of four quarters of tree-rings at annual and intra-annual scales. In addition, we investigated how TRW and vessel features adjust in response to extreme weather events (i.e., summer drought). We found significant differences in TRW, VD, and RCTA among the selected sites. Precipitation and maximum temperature before and during the growing season were the most important climatic factors affecting TRW and vessel characteristics. We confirmed differences in climate-growth relationships between the selected sites, late flushing beech population at Idrija showing the least pronounced response to climate. MVA was the only vessel trait that showed no relationship with TRW or other vessel features. The relationship between MVA and climatic factors evaluated at intra-annual scale indicated that vessel area in the first quarter of tree-ring were mainly influenced by climatic conditions in the previous growing season, while vessel area in the second to fourth quarters of tree ring width was mainly influenced by maximum temperature and precipitation in the current growing season. When comparing wet and dry years, beech from all sites showed a similar response, with reduced TRW and changes in intra-annual variation in vessel area. Our findings suggest that changes in temperature and precipitation regimes as predicted by most climate change scenarios will affect tree-ring increments and wood structure in beech, yet the response between sites or populations may differ.

11.
Tree Physiol ; 41(7): 1171-1185, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33616191

RESUMEN

Research on wood phenology has mainly focused on reactivation of the cambium in spring. In this study we investigated if summer drought advances cessation of wood formation and if it has any influence on wood structure in late successional forest trees of the temperate zone. The end of xylogenesis was monitored between August and November in stands of European beech and pedunculate oak in Belgium for two consecutive years, 2017 and 2018, with the latter year having experienced an exceptional summer drought. Wood formation in oak was affected by the drought, with oak trees ceasing cambial activity and wood maturation about 3 weeks earlier in 2018 compared with 2017. Beech ceased wood formation before oak, but its wood phenology did not differ between years. Furthermore, between the 2 years, no significant difference was found in ring width, percentage of mature fibers in the late season, vessel size and density. In 2018, beech did show thinner fiber walls, whereas oak showed thicker walls. In this paper, we showed that summer drought can have an important impact on late season wood phenology xylem development. This will help to better understand forest ecosystems and improve forest models.


Asunto(s)
Árboles , Madera , Sequías , Ecosistema , Estaciones del Año , Xilema
12.
Tree Physiol ; 41(7): 1161-1170, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33367844

RESUMEN

We explored the timing of spring xylogenesis and its potential drivers in homogeneous mature forest stands in a temperate European region. Three species with contrasting leaf development dynamics and wood anatomy were studied: European beech, silver birch and pedunculate oak. Detailed phenological observations of xylogenesis and leaf phenology were performed from summer 2017 until spring 2018. Cambium reactivation (CR) occurred before the buds of oak and birch were swollen, whereas these two phenological phases were concurrent for beech. On the other hand, initial earlywood vessels were fully differentiated (FDIEV) after leaf unfolding for all three species. Timing of CR was correlated to average ring-width of the last 10 years (2008-17), tree diameter and, partially, with tree age. In addition, the timing of FDIEV was correlated to tree age and previous year's autumn phenology, i.e., timing of wood growth cessation and onset of leaf senescence. Multivariate models could explain up to 68% of the variability of CR and 55% of the variability of FDIEV. In addition to the 'species' factor, the variability could be explained by ca 30% by tree characteristics and previous year's autumn phenology for both CR and FDIEV. These findings are important to better identify which factors (other than environment) can be driving the onset of the growing season, and highlight the influence of tree growth characteristics and previous year's phenology on spring wood phenology, wood formation and, potentially, forest production.


Asunto(s)
Fagus , Quercus , Hojas de la Planta , Estaciones del Año , Árboles
13.
Int J Biometeorol ; 65(2): 311-324, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33067671

RESUMEN

Norway spruce (Picea abies L.) is among the most sensitive coniferous species to ongoing climate change. However, previous studies on its growth response to increasing temperatures have yielded contrasting results (from stimulation to suppression), suggesting highly site-specific responses. Here, we present the first study that applies two independent approaches, i.e. the nonlinear, process-based Vaganov-Shashkin (VS) model and linear daily response functions. Data were collected at twelve sites in Slovenia differing in climate regimes and ranging elevation between 170 and 1300 m a.s.l. VS model results revealed that drier Norway spruce sites at lower elevations are mostly moisture limited, while moist high-elevation sites are generally more temperature limited. Daily response functions match well the pattern of growth-limiting factors from the VS model and further explain the effect of climate on radial growth: prevailing growth-limiting factors correspond to the climate variable with higher correlations. Radial growth correlates negatively with rising summer temperature and positively with higher spring precipitation. The opposite response was observed for the wettest site at the highest elevation, which positively reacts to increased summer temperature and will most likely benefit from a warming climate. For all other sites, the future radial growth of Norway spruce largely depends on the balance between spring precipitation and summer temperature.


Asunto(s)
Abies , Picea , Pinus , Cambio Climático , Noruega , Eslovenia , Árboles
15.
Agric For Meteorol ; 290: 108031, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32817727

RESUMEN

We explored the inter-individual variability in bud-burst and its potential drivers, in homogeneous mature stands of temperate deciduous trees. Phenological observations of leaves and wood formation were performed weekly from summer 2017 to summer 2018 for pedunculate oak, European beech and silver birch in Belgium. The variability of bud-burst was correlated to previous' year autumn phenology (i.e. the onset of leaf senescence and the cessation of wood formation) and tree size but with important differences among species. In fact, variability of bud-burst was primarily related to onset of leaf senescence, cessation of wood formation and tree height for oak, beech and birch, respectively. The inter-individual variability of onset of leaf senescence was not related to the tree characteristics considered and was much larger than the inter-individual variability in bud-burst. Multi-species multivariate models could explain up to 66% of the bud-burst variability. These findings represent an important advance in our fundamental understanding and modelling of phenology and tree functioning of deciduous tree species.

16.
Proc Natl Acad Sci U S A ; 117(34): 20645-20652, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32759218

RESUMEN

Wood formation consumes around 15% of the anthropogenic CO2 emissions per year and plays a critical role in long-term sequestration of carbon on Earth. However, the exogenous factors driving wood formation onset and the underlying cellular mechanisms are still poorly understood and quantified, and this hampers an effective assessment of terrestrial forest productivity and carbon budget under global warming. Here, we used an extensive collection of unique datasets of weekly xylem tissue formation (wood formation) from 21 coniferous species across the Northern Hemisphere (latitudes 23 to 67°N) to present a quantitative demonstration that the onset of wood formation in Northern Hemisphere conifers is primarily driven by photoperiod and mean annual temperature (MAT), and only secondarily by spring forcing, winter chilling, and moisture availability. Photoperiod interacts with MAT and plays the dominant role in regulating the onset of secondary meristem growth, contrary to its as-yet-unquantified role in affecting the springtime phenology of primary meristems. The unique relationships between exogenous factors and wood formation could help to predict how forest ecosystems respond and adapt to climate warming and could provide a better understanding of the feedback occurring between vegetation and climate that is mediated by phenology. Our study quantifies the role of major environmental drivers for incorporation into state-of-the-art Earth system models (ESMs), thereby providing an improved assessment of long-term and high-resolution observations of biogeochemical cycles across terrestrial biomes.


Asunto(s)
Tracheophyta/crecimiento & desarrollo , Madera/crecimiento & desarrollo , Xilema/crecimiento & desarrollo , Clima , Cambio Climático , Ecosistema , Bosques , Calentamiento Global , Modelos Biológicos , Fotoperiodo , Estaciones del Año , Temperatura , Tracheophyta/genética , Árboles/crecimiento & desarrollo
17.
Plant Cell Environ ; 43(10): 2365-2379, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32705694

RESUMEN

The effects of short-term extreme events on tree functioning and physiology are still rather elusive. European beech is one of the most sensitive species to late frost and water shortage. We investigated the intra-annual C dynamics in stems under such conditions. Wood formation and stem CO2 efflux were monitored in a Mediterranean beech forest for 3 years (2015-2017), including a late frost (2016) and a summer drought (2017). The late frost reduced radial growth and, consequently, the amount of carbon fixed in the stem biomass by 80%. Stem carbon dioxide efflux in 2016 was reduced by 25%, which can be attributed to the reduction of effluxes due to growth respiration. Counter to our expectations, we found no effects of the 2017 summer drought on radial growth and stem carbon efflux. The studied extreme weather events had various effects on tree growth. Even though late spring frost had a strong impact on beech radial growth in the current year, trees fully recovered in the following growing season, indicating high resilience of beech to this stressful event.


Asunto(s)
Carbono/metabolismo , Fagus/metabolismo , Tallos de la Planta/metabolismo , Dióxido de Carbono/metabolismo , Sequías , Bosques , Congelación , Región Mediterránea , Madera/metabolismo , Xilema/metabolismo
18.
Tree Physiol ; 40(8): 1001-1013, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32348497

RESUMEN

Cessation of xylem formation or wood growth (CWG) and onset of foliar senescence (OFS) are key autumn phenological events in temperate deciduous trees. Their timing is fundamental for the development and survival of trees, ecosystem nutrient cycling and the seasonal exchange of matter and energy between the biosphere and atmosphere, and affects the impact and feedback of forests to global change. A large-scale experimental effort and improved observational methods have allowed us to compare the timing of CWG and OFS for different deciduous tree species in Western Europe, particularly in silver birch, a pioneer species, and European beech, a late-succession species, at stands of different latitudes, of different levels of site fertility, for 2 years with contrasting meteorological and drought conditions, i.e., the low moderately dry 2017 and the extremely dry 2018. Specifically, we tested whether foliar senescence started before, after or concurrently with CWG. Onset of foliar senescence and CWG occurred generally between late September and early November, with larger differences across species and sites for OFS. Foliar senescence started concurrently with CWG in most cases, except for the drier 2018 and, for beech, at the coldest site, where OFS occurred significantly later than CWG. The behavior of beech in Spain, the southern edge of its European distribution, was unclear, with no CWG, but very low wood growth at the time of OFS. Our study suggests that OFS is generally triggered by the same drivers of CWG or when wood growth decreases in late summer, indicating an overarching mechanism of sink limitation as a possible regulator of the timing of foliar senescence.


Asunto(s)
Ecosistema , Árboles , Europa (Continente) , Hojas de la Planta , Estaciones del Año , España , Temperatura
19.
Tree Physiol ; 40(6): 796-809, 2020 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-32175576

RESUMEN

An increased frequency of fire events on the Slovenian Karst is in line with future climate change scenarios for drought-prone environments worldwide. It is therefore of the utmost importance to better understand tree-fire-climate interactions for predicting the impact of changing environment on tree functioning. To this purpose, we studied the post-fire effects on leaf development, leaf carbon isotope composition (δ13C), radial growth patterns and the xylem and phloem anatomy in undamaged (H-trees) and fire-damaged trees (F-trees) of Quercus pubescens Willd. with good resprouting ability in spring 2017, the growing season after a rangeland fire in August 2016. We found that the fully developed canopy of F-trees reached only half of the leaf area index values measured in H-trees. Throughout the season, F-trees were characterized by higher water potential and stomatal conductivity and achieved higher photosynthetic rates compared to unburnt H-trees. The foliage of F-trees had more negative δ13C values than those of H-trees. This reflects that F-trees less frequently meet stomatal limitations due to reduced transpirational area and more favourable leaf-to-root ratio. In addition, the growth of leaves in F-trees relied more on the recent photosynthates than on reserves due to the fire disturbed starch accumulation in the previous season. Cambial production stopped 3 weeks later in F-trees, resulting in 60 and 22% wider xylem and phloem increments, respectively. A novel approach by including phloem anatomy in the analyses revealed that fire caused changes in conduit dimensions in the early phloem but not in the earlywood. However, premature formation of the tyloses in the earlywood vessels of the youngest two xylem increments in F-trees implies that xylem hydraulic integrity was also affected by heat. Analyses of secondary tissues showed that although xylem and phloem tissues are interlinked changes in their transport systems due to heat damage are not necessarily coordinated.


Asunto(s)
Incendios , Quercus , Hojas de la Planta , Árboles , Xilema
20.
Tree Physiol ; 39(2): 262-274, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30239917

RESUMEN

Despite increased interest in the timing and dynamics of phloem formation, seasonal changes in the structure of phloem sieve elements remain largely unexplored. To understand better the dynamics of phloem formation and the functioning of sieve tubes in the youngest phloem in Fagus sylvatica L., we investigated repeatedly taken phloem samples during the growing season of 2017 by means of light microscopy, and transmission and scanning electron microscopy. Phloem formation started with the expansion of the overwintered early phloem sieve tubes adjacent to the cambium and concurrent cambial cell production. The highest phloem growth rate was observed in general 1 week after the onset of cambial cell production, whereas the transition from early to late phloem occurred at the end of May. Cambial cell production ceased at the end of July. The final width of the phloem increment was 184 ± 10 µm, with an early phloem proportion of 59%. Collapse of older phloem tissue is a progressive process, which continuously occurred during the sampling period. Collapse of early phloem sieve tubes started shortly after the cessation of cambial cell production. Prior to the onset of radial growth, late phloem from the previous year represented 80% of the total non-collapsed part; during the growth period, this percentage decreased to 20%. Differences were observed in both sieve tube ultrastructure and sieve plate geometry between the youngest and older phloem. However, sieve plates were never completely occluded by callose, suggesting that processes affecting the functionality of sieve tubes may differ in the case of regular collapse or injury. The youngest parts of the phloem increment from the previous year (i.e., previous late phloem) continue functioning for some time in the current growing season, but the two-step development of overwintered phloem cells also ensures a sufficient translocation pathway for photosynthates to the actively growing tissues.


Asunto(s)
Fagus/crecimiento & desarrollo , Floema/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Cámbium/crecimiento & desarrollo , Fagus/ultraestructura , Floema/ultraestructura , Células Vegetales/fisiología , Células Vegetales/ultraestructura , Estaciones del Año , Árboles/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...