Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 3(1): 751, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33303966

RESUMEN

Inactivating mutations affecting key mismatch repair (MMR) components lead to microsatellite instability (MSI) and cancer. However, a number of patients with MSI-tumors do not present alterations in classical MMR genes. Here we discovered that specific missense mutations in the MutL homolog MLH2, which is dispensable for MMR, confer a dominant mutator phenotype in S. cerevisiae. MLH2 mutations elevated frameshift mutation rates, and caused accumulation of long-lasting nuclear MMR foci. Both aspects of this phenotype were suppressed by mutations predicted to prevent the binding of Mlh2 to DNA. Genetic analysis revealed that mlh2 dominant mutations interfere with both Exonuclease 1 (Exo1)-dependent and Exo1-independent MMR. Lastly, we demonstrate that a homolog mutation in human hPMS1 results in a dominant mutator phenotype. Our data support a model in which yeast Mlh1-Mlh2 or hMLH1-hPMS1 mutant complexes act as roadblocks on DNA preventing MMR, unraveling a novel mechanism that can account for MSI in human cancer.


Asunto(s)
Reparación de la Incompatibilidad de ADN/genética , Proteínas MutL/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Daño del ADN , Eliminación de Gen , Humanos , Proteínas MutL/genética , Mutación , Proteínas de Neoplasias/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Técnicas del Sistema de Dos Híbridos
2.
Nucleic Acids Res ; 47(1): 237-252, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30462295

RESUMEN

The balance and the overall concentration of intracellular deoxyribonucleoside triphosphates (dNTPs) are important determinants of faithful DNA replication. Despite the established fact that changes in dNTP pools negatively influence DNA replication fidelity, it is not clear why certain dNTP pool alterations are more mutagenic than others. As intracellular dNTP pools are mainly controlled by ribonucleotide reductase (RNR), and given the limited number of eukaryotic RNR mutations characterized so far, we screened for RNR1 mutations causing mutator phenotypes in Saccharomyces cerevisiae. We identified 24 rnr1 mutant alleles resulting in diverse mutator phenotypes linked in most cases to imbalanced dNTPs. Among the identified rnr1 alleles the strongest mutators presented a dNTP imbalance in which three out of the four dNTPs were elevated (dCTP, dTTP and dGTP), particularly if dGTP levels were highly increased. These rnr1 alleles caused growth defects/lethality in DNA replication fidelity-compromised backgrounds, and caused strong mutator phenotypes even in the presence of functional DNA polymerases and mismatch repair. In summary, this study pinpoints key residues that contribute to allosteric regulation of RNR's overall activity or substrate specificity. We propose a model that distinguishes between different dNTP pool alterations and provides a mechanistic explanation why certain dNTP imbalances are particularly detrimental.


Asunto(s)
Replicación del ADN/genética , Desoxirribonucleótidos/genética , Ribonucleótido Reductasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Alelos , Reparación de la Incompatibilidad de ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Homeostasis , Mutación/genética , Saccharomyces cerevisiae/genética
3.
Proc Natl Acad Sci U S A ; 114(22): E4442-E4451, 2017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28416670

RESUMEN

Eukaryotic DNA replication fidelity relies on the concerted action of DNA polymerase nucleotide selectivity, proofreading activity, and DNA mismatch repair (MMR). Nucleotide selectivity and proofreading are affected by the balance and concentration of deoxyribonucleotide (dNTP) pools, which are strictly regulated by ribonucleotide reductase (RNR). Mutations preventing DNA polymerase proofreading activity or MMR function cause mutator phenotypes and consequently increased cancer susceptibility. To identify genes not previously linked to high-fidelity DNA replication, we conducted a genome-wide screen in Saccharomyces cerevisiae using DNA polymerase active-site mutants as a "sensitized mutator background." Among the genes identified in our screen, three metabolism-related genes (GLN3, URA7, and SHM2) have not been previously associated to the suppression of mutations. Loss of either the transcription factor Gln3 or inactivation of the CTP synthetase Ura7 both resulted in the activation of the DNA damage response and imbalanced dNTP pools. Importantly, these dNTP imbalances are strongly mutagenic in genetic backgrounds where DNA polymerase function or MMR activity is partially compromised. Previous reports have shown that dNTP pool imbalances can be caused by mutations altering the allosteric regulation of enzymes involved in dNTP biosynthesis (e.g., RNR or dCMP deaminase). Here, we provide evidence that mutations affecting genes involved in RNR substrate production can cause dNTP imbalances, which cannot be compensated by RNR or other enzymatic activities. Moreover, Gln3 inactivation links nutrient deprivation to increased mutagenesis. Our results suggest that similar genetic interactions could drive mutator phenotypes in cancer cells.


Asunto(s)
Reparación de la Incompatibilidad de ADN/genética , Replicación del ADN/genética , Mutagénesis/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Ligasas de Carbono-Nitrógeno/genética , Ligasas de Carbono-Nitrógeno/metabolismo , Daño del ADN/genética , Fosfatos de Dinucleósidos/genética , Fosfatos de Dinucleósidos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
PLoS Genet ; 10(5): e1004327, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24811092

RESUMEN

In Saccharomyces cerevisiae, the essential mismatch repair (MMR) endonuclease Mlh1-Pms1 forms foci promoted by Msh2-Msh6 or Msh2-Msh3 in response to mispaired bases. Here we analyzed the Mlh1-Mlh2 complex, whose role in MMR has been unclear. Mlh1-Mlh2 formed foci that often colocalized with and had a longer lifetime than Mlh1-Pms1 foci. Mlh1-Mlh2 foci were similar to Mlh1-Pms1 foci: they required mispair recognition by Msh2-Msh6, increased in response to increased mispairs or downstream defects in MMR, and formed after induction of DNA damage by phleomycin but not double-stranded breaks by I-SceI. Mlh1-Mlh2 could be recruited to mispair-containing DNA in vitro by either Msh2-Msh6 or Msh2-Msh3. Deletion of MLH2 caused a synergistic increase in mutation rate in combination with deletion of MSH6 or reduced expression of Pms1. Phylogenetic analysis demonstrated that the S. cerevisiae Mlh2 protein and the mammalian PMS1 protein are homologs. These results support a hypothesis that Mlh1-Mlh2 is a non-essential accessory factor that acts to enhance the activity of Mlh1-Pms1.


Asunto(s)
Disparidad de Par Base , ADN de Hongos/genética , Proteínas Nucleares/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Proteínas Portadoras/fisiología , Daño del ADN , Mutación del Sistema de Lectura , Proteínas MutL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA