Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Infection ; 52(2): 597-609, 2024 Apr.
Article En | MEDLINE | ID: mdl-38332255

PURPOSE: Respiratory syncytial virus (RSV) is one of the leading causes of severe respiratory disease in infants and adults. While vaccines and monoclonal therapeutic antibodies either are or will shortly become available, correlates of protection remain unclear. For this purpose, we developed an RSV multiplex immunoassay that analyses antibody titers toward the post-F, Nucleoprotein, and a diverse mix of G proteins. METHODS: A bead-based multiplex RSV immunoassay was developed, technically validated to standard FDA bioanalytical guidelines, and clinically validated using samples from human challenge studies. RSV antibody titers were then investigated in children aged under 2 and a population-based cohort. RESULTS: Technical and clinical validation showed outstanding performance, while methodological developments enabled identification of the subtype of previous infections through use of the diverse G proteins for approximately 50% of samples. As a proof of concept to show the suitability of the assay in serosurveillance studies, we then evaluated titer decay and age-dependent antibody responses within population cohorts. CONCLUSION: Overall, the developed assay shows robust performance, is scalable, provides additional information on infection subtype, and is therefore ideally suited to be used in future population cohort studies.


Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Child , Infant , Adult , Humans , Respiratory Syncytial Virus Infections/diagnosis , Viral Fusion Proteins , Antibodies, Viral , Antibodies, Monoclonal , Immunoassay , GTP-Binding Proteins , Antibodies, Neutralizing
2.
Sci Rep ; 13(1): 22631, 2023 12 20.
Article En | MEDLINE | ID: mdl-38123577

Secretory immunoglobulin A (sIgA) in saliva is the most important immunoglobulin fighting pathogens in the respiratory tract and may thus play a role in preventing SARS-CoV-2 infections. To gain a better understanding of the plasticity in the mucosal antibody, we investigated the proactive change in secretion of salivary SARS-CoV-2-specific sIgA in 45 vaccinated and/or previously infected, generally healthy persons (18 to 35 years, 22 women). Participants were exposed to a disease video displaying humans with several respiratory symptoms typical for COVID-19 in realistic situations of increased contagion risk. The disease video triggered an increase in spike-specific sIgA, which was absent after a similar control video with healthy people. The increase further correlated inversely with revulsion and aversive feelings while watching sick people. In contrast, the receptor binding domain-specific sIgA did not increase after the disease video. This may indicate differential roles of the two salivary antibodies in response to predictors of airborne contagion. The observed plasticity of spike-specific salivary antibody release after visual simulation of enhanced contagion risk suggests a role in immune exclusion.


COVID-19 , Immunoglobulin A, Secretory , Humans , Female , Immunoglobulin A, Secretory/metabolism , Saliva/metabolism , SARS-CoV-2 , COVID-19/metabolism
3.
Clin Infect Dis ; 76(3): e240-e249, 2023 02 08.
Article En | MEDLINE | ID: mdl-35717657

BACKGROUND: The rapid emergence of the Omicron variant and its large number of mutations led to its classification as a variant of concern (VOC) by the World Health Organization. Subsequently, Omicron evolved into distinct sublineages (eg, BA.1 and BA.2), which currently represent the majority of global infections. Initial studies of the neutralizing response toward BA.1 in convalescent and vaccinated individuals showed a substantial reduction. METHODS: We assessed antibody (immunoglobulin G [IgG]) binding, ACE2 (angiotensin-converting enzyme 2) binding inhibition, and IgG binding dynamics for the Omicron BA.1 and BA.2 variants compared to a panel of VOCs/variants of interest, in a large cohort (N = 352) of convalescent, vaccinated, and infected and subsequently vaccinated individuals. RESULTS: While Omicron was capable of efficiently binding to ACE2, antibodies elicited by infection or immunization showed reduced binding capacities and ACE2 binding inhibition compared to wild type. Whereas BA.1 exhibited less IgG binding compared to BA.2, BA.2 showed reduced inhibition of ACE2 binding. Among vaccinated samples, antibody binding to Omicron only improved after administration of a third dose. CONCLUSIONS: Omicron BA.1 and BA.2 can still efficiently bind to ACE2, while vaccine/infection-derived antibodies can bind to Omicron. The extent of the mutations within both variants prevents a strong inhibitory binding response. As a result, both Omicron variants are able to evade control by preexisting antibodies.


Angiotensin-Converting Enzyme 2 , Immunoglobulin G , Humans , Immunization , Mutation , Postoperative Complications , Antibodies, Viral , Antibodies, Neutralizing
4.
Front Immunol ; 13: 828053, 2022.
Article En | MEDLINE | ID: mdl-35251012

Recent increases in SARS-CoV-2 infections have led to questions about duration and quality of vaccine-induced immune protection. While numerous studies have been published on immune responses triggered by vaccination, these often focus on studying the impact of one or two immunisation schemes within subpopulations such as immunocompromised individuals or healthcare workers. To provide information on the duration and quality of vaccine-induced immune responses against SARS-CoV-2, we analyzed antibody titres against various SARS-CoV-2 antigens and ACE2 binding inhibition against SARS-CoV-2 wild-type and variants of concern in samples from a large German population-based seroprevalence study (MuSPAD) who had received all currently available immunisation schemes. We found that homologous mRNA-based or heterologous prime-boost vaccination produced significantly higher antibody responses than vector-based homologous vaccination. Ad26.CoV2S.2 performance was particularly concerning with reduced titres and 91.7% of samples classified as non-responsive for ACE2 binding inhibition, suggesting that recipients require a booster mRNA vaccination. While mRNA vaccination induced a higher ratio of RBD- and S1-targeting antibodies, vector-based vaccines resulted in an increased proportion of S2-targeting antibodies. Given the role of RBD- and S1-specific antibodies in neutralizing SARS-CoV-2, their relative over-representation after mRNA vaccination may explain why these vaccines have increased efficacy compared to vector-based formulations. Previously infected individuals had a robust immune response once vaccinated, regardless of which vaccine they received, which could aid future dose allocation should shortages arise for certain manufacturers. Overall, both titres and ACE2 binding inhibition peaked approximately 28 days post-second vaccination and then decreased.


Ad26COVS1/immunology , COVID-19/immunology , Immunity, Humoral/immunology , SARS-CoV-2/growth & development , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Formation/immunology , Cross-Sectional Studies , Germany , Humans , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods
5.
Emerg Infect Dis ; 28(4): 743-750, 2022 04.
Article En | MEDLINE | ID: mdl-35203113

Patients undergoing chronic hemodialysis were among the first to receive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccinations because of their increased risk for severe coronavirus disease and high case-fatality rates. By using a previously reported cohort from Germany of at-risk hemodialysis patients and healthy donors, where antibody responses were examined 3 weeks after the second vaccination, we assessed systemic cellular and humoral immune responses in serum and saliva 4 months after vaccination with the Pfizer-BioNTech BNT162b2 vaccine using an interferon-γ release assay and multiplex-based IgG measurements. We further compared neutralization capacity of vaccination-induced IgG against 4 SARS-CoV-2 variants of concern (Alpha, Beta, Gamma, and Delta) by angiotensin-converting enzyme 2 receptor-binding domain competition assay. Sixteen weeks after second vaccination, compared with 3 weeks after, cellular and humoral responses against the original SARS-CoV-2 isolate and variants of concern were substantially reduced. Some dialysis patients even had no detectable B- or T-cell responses.


COVID-19 , SARS-CoV-2 , Antibodies, Viral , BNT162 Vaccine , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines , Humans , Immunity, Humoral , RNA, Messenger , Renal Dialysis , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Vaccination
6.
JMIR Res Protoc ; 10(10): e27739, 2021 Oct 08.
Article En | MEDLINE | ID: mdl-34533472

BACKGROUND: The world has been confronted with the COVID-19 pandemic for more than one year. Severe disease is more often found among elderly people, whereas most young children and adolescents show mild symptoms or even remain asymptomatic, so that infection might be undiagnosed. Therefore, only limited epidemiological data on SARS-CoV-2 infection in children and young adults are available. OBJECTIVE: This study aims to determine the prevalence of SARS-CoV-2 antibodies in children from the city of Tübingen, Germany, and to measure the incidence of new cases over 12 months. METHODS: SARS-CoV-2 antibodies will be measured in saliva as a surrogate for a previous SARS-CoV-2 infection. Children will be sampled at their preschools, primary schools, and secondary schools at three time points: July 2020, October to December 2020, and April to July 2021. An adult cohort will be sampled at the same time points (ie, adult comparator group). The saliva-based SARS-CoV-2-antibody enzyme-linked immunosorbent assay will be validated using blood and saliva samples from adults with confirmed previous SARS-CoV-2 infections (ie, adult validation group). RESULTS: The first study participant was enrolled in July 2020, and recruitment and enrollment continued until July 2021. We have recruited and enrolled 1850 children, 560 adults for the comparator group, and 83 adults for the validation group. We have collected samples from the children and the adults for the comparator group at the three time points. We followed up with participants in the adult validation group every 2 months and, as of the writing of this paper, we were at time point 7. We will conduct data analysis after the data collection period. CONCLUSIONS: Infection rates in children are commonly underreported due to a lack of polymerase chain reaction testing. This study will report on the prevalence of SARS-CoV-2 infections in infants, school children, and adolescents as well as the incidence change over 12 months in the city of Tübingen, Germany. The saliva sampling approach for SARS-CoV-2-antibody measurement allows for a unique, representative, population-based sample collection process. TRIAL REGISTRATION: ClinicalTrials.gov NCT04581889; https://clinicaltrials.gov/ct2/show/NCT04581889. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/27739.

7.
Sci Rep ; 11(1): 11899, 2021 06 07.
Article En | MEDLINE | ID: mdl-34099796

The pandemic caused by SARS-CoV-2 resulted in increasing demands for diagnostic tests, leading to a shortage of recommended testing materials and reagents. This study reports on the performance of self-sampled alternative swabbing material (ordinary Q-tips tested against flocked swab and rayon swab), of reagents for classical RNA extraction (phenol/guanidine-based protocol against a commercial kit), and of intercalating dye-based one-step quantitative reverse transcription real-time PCRs (RT-qPCR) compared against the gold standard hydrolysis probe-based assays for SARS-CoV-2 detection. The study found sampling with Q-tips, RNA extraction with classical protocol and intercalating dye-based RT-qPCR as a reliable and comparably sensitive strategy for detection of SARS-CoV-2-particularly valuable in the current period with a resurgent and dramatic increase in SARS-CoV-2 infections and growing shortage of diagnostic materials especially for regions limited in resources.


COVID-19 Testing , COVID-19/diagnosis , RNA, Viral/genetics , SARS-CoV-2/pathogenicity , Specimen Handling , COVID-19 Testing/methods , Humans , Real-Time Polymerase Chain Reaction/methods , Reverse Transcription/physiology , Specimen Handling/methods , Time Factors
...