Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Angew Chem Int Ed Engl ; : e202407427, 2024 May 22.
Article En | MEDLINE | ID: mdl-38775385

By exploiting the electronic capabilities of the N-heterocyclic boryloxy (NHBO) ligand, we have synthesized 'naked' acyclic gallyl [Ga{OB(NDippCH)2}2]- and indyl [In{OB(NDippCH)2}2]- anions (as their [K(2.2.2-crypt)]+ salts) through K+ abstraction from [KGa{OB(NDippCH)2}2] and [KIn{OB(NDippCH)2}2] using 2.2.2-crypt. These systems represent the first O-ligated gallyl/indyl systems, are ultimately accessed from cyclopentadienyl GaI/InI precursors by substitution chemistry, and display nucleophilic reactivity which is strongly influenced by the presence (or otherwise) of the K+ counterion.

2.
J Am Chem Soc ; 146(17): 11792-11800, 2024 May 01.
Article En | MEDLINE | ID: mdl-38626444

The large steric profile of the N-heterocyclic boryloxy ligand, -OB(NDippCH)2, and its ability to stabilize the metal-centered HOMO, are exploited in the synthesis of the first example of a "naked" acyclic aluminyl complex, [K(2.2.2-crypt)][Al{OB(NDippCH)2}2]. This system, which is formed by substitution at AlI (rather than reduction of AlIII), represents the first O-ligated aluminyl compound and is shown to be capable of hitherto unprecedented reversible single-site [4 + 1] cycloaddition of benzene. This chemistry and the unusual regioselectivity of the related cycloaddition of anthracene are shown to be highly dependent on the availability (or otherwise) of the K+ countercation.

3.
Angew Chem Int Ed Engl ; 63(23): e202404527, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38545953

Bimetallic compounds containing direct metal-group 13 element bonds have been shown to display unprecedented patterns of cooperative reactivity towards small molecules, which can be influenced by the identity of the group 13 element. In this context, we present here a systematic appraisal of group 13 metallo-ligands of the type [(NON)E]- (NON=4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethylxanthene) for E=Al, Ga and In, through a comparison of structural and spectroscopic parameters associated with the trans L or X ligands in linear d10 complexes of the types LM{E(NON)} and XM'{E(NON)}. These studies are facilitated by convenient syntheses (from the In(I) precursor, InCp) of the potassium indyl species [{K(NON)In}⋅KCp]n (1) and [(18-crown-6)2K2Cp] [(NON)In] (1'), and lead to the first structural characterisation of Ag-In and Hg-E (E=Al, In) covalent bonds. The resulting structural, spectroscopic and quantum chemical probes of Ag/Hg complexes are consistent with markedly stronger σ-donor capabilities of the aluminyl ligand, [(NON)Al]-, over its gallium and indium counterparts.

4.
Angew Chem Int Ed Engl ; 63(22): e202405053, 2024 May 27.
Article En | MEDLINE | ID: mdl-38536728

The homoleptic magnesium bis(aluminyl) compound Mg[Al(NON)]2 (NON=4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethylxanthene) can be accessed from K2[Al(NON)]2 and MgI2 and shown to possess a non-linear geometry (∠Al-Mg-Al=164.8(1)°) primarily due to the influence of dispersion interactions. This compound acts a four-electron reservoir in the reductive de-fluorination of SF6, and reacts thermally with polar substrates such as MeI via nucleophilic attack through aluminium, consistent with the QT-AIM charges calculated for the metal centres, and a formal description as a Al(I)-Mg(II)-Al(I) trimetallic. On the other hand, under photolytic activation, the reaction with 1,5-cyclooctadiene leads to the stereo-selective generation of transannular cycloaddition products consistent with radical based chemistry, emphasizing the covalent nature of the Mg-Al bonds and a description as a Al(II)-Mg(0)-Al(II) synthon. Consistently, photolysis of Mg[Al(NON)]2 in hexane in the absence of COD generates [Al(NON)]2 together with magnesium metal.

5.
J Am Chem Soc ; 144(28): 12942-12953, 2022 07 20.
Article En | MEDLINE | ID: mdl-35786888

Homologation of carbon monoxide is central to the heterogeneous Fischer-Tropsch process for the production of hydrocarbon fuels. C-C bond formation has been modeled by homogeneous systems, with [CnOn]2- fragments (n = 2-6) formed by two-electron reduction being commonly encountered. Here, we show that four- or six-electron reduction of CO can be accomplished by the use of anionic aluminum(I) ("aluminyl") compounds to give both topologically linear and branched C4/C6 chains. We show that the mechanism for homologation relies on the highly electron-rich nature of the aluminyl reagent and on an unusual mode of interaction of the CO molecule, which behaves primarily as a Z-type ligand in initial adduct formation. The formation of [C6O6]4- from [C4O4]4- shows for the first time a solution-phase CO homologation process that brings about chain branching via complete C-O bond cleavage, while a comparison of the linear [C4O4]4- system with the [C4O4]6- congener formed under more reducing conditions models the net conversion of C-O bonds to C-C bonds in the presence of additional reductants.


Carbon Monoxide , Hydrocarbons , Carbon Monoxide/chemistry , Electrons , Hydrocarbons/chemistry , Isomerism , Ligands
6.
Angew Chem Int Ed Engl ; 61(17): e202117496, 2022 Apr 19.
Article En | MEDLINE | ID: mdl-35143702

We report on the reversible uptake of carbon dioxide by dimetallynes featuring ancillary hemi-labile pincer ligands. Insertion into the Ge-Ge/Sn-Sn bonds yields species containing an E(CO2 )E unit, with the mode of ligation of the CO2 fragment determined crystallographically being found to be dependent on the identity of the Group 14 element. The thermodynamics of CO2 uptake/loss can be established through VT NMR (ΔH°=+24.6(2.3) kJ mol-1 , ΔS°=+64.9(3.8) J mol-1 K-1 , ΔG°298 =+5.3(1.9) kJ mol-1 for the loss of CO2 in the Ge case), and the chemical consequences of reversibility demonstrated by thermodynamically-controlled exchange reactions.

7.
Angew Chem Int Ed Engl ; 60(28): 15606-15612, 2021 Jul 05.
Article En | MEDLINE | ID: mdl-33939867

We present a novel approach for constructing chains of Group 14 metal atoms linked by unsupported metal-metal bonds that exploits hemilabile ligands to generate unsaturated metal sites. The formation/nature of catenated species (oligo-dimetallynes) can be controlled by the use of (acidic/basic) "protecting groups" and through variation of the ligand scaffold. Reduction of ArNiPr2 GeCl (ArNiPr2 =2,6-(i Pr2 NCH2 )2 C6 H3 )-featuring hemilabile Ni Pr2 donors-yields (ArNiPr2 Ge)4 (2), which contains a tetrameric Ge4 chain. 2 represents a novel type of a linear homo-catenated GeI compound featuring unsupported E-E bonds. Trapping experiments reveal that a key structural component is the central two-way Ge=Ge donor-acceptor bond: reactions with IMe4 and W(CO)5 (NMe3 ) give the base- or acid-stabilized digermynes (ArNiPr2 Ge(IMe4 ))2 (4) and (ArNiPr2 Ge{W(CO)5 })2 (5), respectively. The use of smaller N-donors leads to stronger Ge-N interactions and quenching of catenation behaviour: reduction of ArNEt2 GeCl gives the digermyne (ArNEt2 Ge)2 , while the unsymmetrical system ArNEt2 GeGeArNiPr2 dimerizes to give tetranuclear (ArNEt2 GeGeArNiPr2 )2 through aggregation at the Ni Pr2 -ligated GeI centres.

...