Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Brain Sci ; 14(4)2024 Apr 14.
Article En | MEDLINE | ID: mdl-38672031

This paper presents a novel approach to improving the detection of mild cognitive impairment (MCI) through the use of super-resolved structural magnetic resonance imaging (MRI) and optimized deep learning models. The study introduces enhancements to the perceptual quality of super-resolved 2D structural MRI images using advanced loss functions, modifications to the upscaler part of the generator, and experiments with various discriminators within a generative adversarial training setting. It empirically demonstrates the effectiveness of super-resolution in the MCI detection task, showcasing performance improvements across different state-of-the-art classification models. The paper also addresses the challenge of accurately capturing perceptual image quality, particularly when images contain checkerboard artifacts, and proposes a methodology that incorporates hyperparameter optimization through a Pareto optimal Markov blanket (POMB). This approach systematically explores the hyperparameter space, focusing on reducing overfitting and enhancing model generalizability. The research findings contribute to the field by demonstrating that super-resolution can significantly improve the quality of MRI images for MCI detection, highlighting the importance of choosing an adequate discriminator and the potential of super-resolution as a preprocessing step to boost classification model performance.

2.
Life (Basel) ; 13(9)2023 Sep 11.
Article En | MEDLINE | ID: mdl-37763297

Magnetic resonance imaging (MRI) is a technique that is widely used in practice to evaluate any pathologies in the human body. One of the areas of interest is the human brain. Naturally, MR images are low-resolution and contain noise due to signal interference, the patient's body's radio-frequency emissions and smaller Tesla coil counts in the machinery. There is a need to solve this problem, as MR tomographs that have the capability of capturing high-resolution images are extremely expensive and the length of the procedure to capture such images increases by the order of magnitude. Vision transformers have lately shown state-of-the-art results in super-resolution tasks; therefore, we decided to evaluate whether we can employ them for structural MRI super-resolution tasks. A literature review showed that similar methods do not focus on perceptual image quality because upscaled images are often blurry and are subjectively of poor quality. Knowing this, we propose a methodology called HR-MRI-GAN, which is a hybrid transformer generative adversarial network capable of increasing resolution and removing noise from 2D T1w MRI slice images. Experiments show that our method quantitatively outperforms other SOTA methods in terms of perceptual image quality and is capable of subjectively generalizing to unseen data. During the experiments, we additionally identified that the visual saliency-induced index metric is not applicable to MRI perceptual quality assessment and that general-purpose denoising networks are effective when removing noise from MR images.

...