Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Drug Deliv ; 30(1): 2219420, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37322900

RESUMEN

This study aims to explore the stability of lipo-polymeric niosomes/niosome-based pCMS-EGFP complexes under different storage temperatures (25 °C, 4 °C, and -20 °C). To date, the question of nucleic acid-complex stability is one of the most vital issues in gene delivery applications. The need for stable vaccines during the COVID-19 pandemic has merely highlighted it. In the case of niosomes as gene carriers, the scientific literature still lacks comprehensive stability studies. In this study, the physicochemical features of niosomes/nioplexes in terms of size, surface charge, and polydispersity index (PDI), along with transfection efficiency, and cytotoxicity in NT2 cells were evaluated for 8 weeks. Compared to day 0, the physicochemical features of the niosomes stored at 25 °C and -20 °C changed dramatically in terms of size, zeta potential, and PDI, while remaining in reasonable values when stored at 4 °C. However, niosomes and nioplexes stored at 4 °C and -20 °C showed nearly stable transfection efficiency values, yet an obvious decrease at 25 °C. This article provides a proof of concept into the stability of polymeric cationic niosomes and their nioplexes as promising gene delivery vehicles. Moreover, it highlights the practical possibility of storing nioplexes at 4 °C for up to 2 months, as an alternative to niosomes, for gene delivery purposes.


Asunto(s)
COVID-19 , Liposomas , Humanos , Liposomas/química , Pandemias , Plásmidos , ADN , Polímeros
2.
Nanoscale ; 15(17): 7929-7944, 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37067009

RESUMEN

A hydroxycinnamic acid derivative, namely ferulic acid (FA) has been successfully encapsulated in polymeric nanoparticles (NPs) based on poly(lactic-co-glycolic acid) (PLGA). FA-loaded polymeric NPs were prepared from O/W nano-emulsion templates using the phase inversion composition (PIC) low-energy emulsification method. The obtained PLGA NPs exhibited high colloidal stability, good drug-loading capacity, and particle hydrodynamic diameters in the range of 74 to 117 nm, depending on the FA concentration used. In vitro drug release studies confirmed a diffusion-controlled mechanism through which the amount of released FA reached a plateau at 60% after 6 hours-incubation. Five kinetic models were used to fit the FA release data as a function of time. The Weibull distribution and Korsmeyer-Peppas equation models provided the best fit to our experimental data and suggested quasi-Fickian diffusion behaviour. Moderate dose-response antioxidant and radical scavenging activities of FA-loaded PLGA NPs were demonstrated using the DPPH˙ assay achieving inhibition activities close to 60 and 40%, respectively. Cell culture studies confirmed that FA-loaded NPs were not toxic according to the MTT colorimetric assay, were able to internalise efficiently SH-SY5Y neuronal cells and supressed the intracellular ROS-level induced by H2O2 leading to 52% and 24.7% of cellular viability at 0.082 and 0.041 mg mL-1, respectively. The permeability of the NPs through the blood brain barrier was tested with an in vitro organ-on-a-chip model to evaluate the ability of the FA-loaded PLGA and non-loaded PLGA NPs to penetrate to the brain. NPs were able to penetrate the barrier, but permeability decreased when FA was loaded. These results are promising for the use of loaded PLGA NPs for the management of neurological diseases.


Asunto(s)
Nanopartículas , Neuroblastoma , Humanos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ácidos Cumáricos/farmacología , Ácido Poliglicólico , Ácido Láctico , Barrera Hematoencefálica , Peróxido de Hidrógeno , Tamaño de la Partícula , Portadores de Fármacos/farmacología
3.
Beilstein J Nanotechnol ; 14: 339-350, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36959976

RESUMEN

The formulation of nanoemulsions by low-energy strategies, particularly by the phase inversion composition method, and the use of these nanoemulsions as templates for the preparation of polymer nanoparticles for biomedical applications are reviewed. The methods of preparation, nature of the components in the formulation, and their impact on the physicochemical properties, drug loading, and drug release are discussed. We highlight the utilization of ethyl cellulose, poly(lactic-co-glycolic acid), and polyurethane/polyurea in the field of nanomedicine as potential drug delivery systems. Advances are still needed to achieve better control over size distribution, nanoparticle concentration, surface functionalization, and the type of polymers that can be processed.

4.
Nanoscale Adv ; 5(6): 1611-1623, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36926558

RESUMEN

Oligopeptide end-modified poly(ß-amino ester)s (OM-pBAEs) offer a means for the effective implementation of gene therapeutics in the near future. A fine-tuning of OM-pBAEs to meet application requirements is achieved by the proportional balance of oligopeptides used and provide gene carriers with high transfection efficacy, low toxicity, precise targeting, biocompatibility, and biodegradability. Understanding the influence and conformation of each building block at molecular and biological levels is therefore pivotal for further development and improvement of these gene carriers. Herein, we unmask the role of individual OM-pBAE components and their conformation in OM-pBAE/polynucleotide nanoparticles using a combination of fluorescence resonance energy transfer, enhanced darkfield spectral microscopy, atomic force microscopy, and microscale thermophoresis. We found that modifying the pBAE backbone with three end-terminal amino acids produces unique mechanical and physical properties for each combination. Higher adhesion properties are seen with arginine and lysine-based hybrid nanoparticles, while histidine provides an advantage in terms of construct stability. Our results shed light on the high potential of OM-pBAEs as gene delivery vehicles and provide insights into the influence of the nature of surface charges and the chemical nature of the pBAE modifications on their paths towards endocytosis, endosomal escape, and transfection.

5.
Pharmaceutics ; 15(2)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36839642

RESUMEN

Antisense and small interfering RNA (siRNA) oligonucleotides have been recognized as powerful therapeutic compounds for targeting mRNAs and inducing their degradation. However, a major obstacle is that unmodified oligonucleotides are not readily taken up into tissues and are susceptible to degradation by nucleases. For these reasons, the design and preparation of modified DNA/RNA derivatives with better stability and an ability to be produced at large scale with enhanced uptake properties is of vital importance to improve current limitations. In the present study, we review the conjugation of oligonucleotides with lipids and peptides in order to produce oligonucleotide conjugates for therapeutics aiming to develop novel compounds with favorable pharmacokinetics.

6.
Colloids Surf B Biointerfaces ; 222: 113019, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36435028

RESUMEN

Drug and gene delivery systems based on polymeric nanoparticles offer a greater efficacy and a reduced toxicity compared to traditional formulations. Recent studies have evidenced that their internalization, biodistribution and efficacy can be affected, among other factors, by their mechanical properties. Here, we analyze by means of Atomic Force Microscopy force spectroscopy how composition, surface functionalization and loading affect the mechanics of nanoparticles. For this purpose, nanoparticles made of Poly(lactic-co-glycolic) (PLGA) and Ethyl cellulose (EC) with different functionalizations and loading were prepared by nano-emulsion templating using the Phase Inversion Composition method (PIC) to form the nano-emulsions. A multiparametric nanomechanical study involving the determination of the Young's modulus, maximum deformation and breakthrough force was carried out. The obtained results showed that composition, surface functionalization and loading affect the nanomechanical properties in a different way, thus requiring, in general, to consider the overall mechanical properties after the addition of a functionalization or loading. A graphical representation method has been proposed enabling to easily identify mechanically equivalent formulations, which is expected to be useful in the development of soft polymeric nanoparticles for pre-clinical and clinical use.


Asunto(s)
Nanopartículas , Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ácido Poliglicólico/química , Ácido Láctico/química , Distribución Tisular , Nanopartículas/química
7.
J Funct Biomater ; 13(4)2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36412860

RESUMEN

Carbon dots (Cdots) are known as photosensitizers in which the nitrogen doping is able to improve the oxygen-photosensitization performance and singlet-oxygen generation. Herein, the characteristics of nanoconjugates of nitrogen-doped Cdots and doxorubicin were compared with the property of nitrogen-doped Cdots alone. The investigation was performed for the evaluation of pH-dependent zeta potential, quantum yield, photosensitization efficiency and singlet-oxygen generation, besides spectroscopy (UV-visible absorption and fluorescence spectra) and cytotoxicity on cancer model (HeLa cells). Encapsulation efficiency, drug loading, and drug release without and with light irradiation were also carried out. These investigations were always pursued under the comparison among different nitrogen amounts (ethylenediamine/citric acid = 1-5) in Cdots, and some characteristics strongly depended on nitrogen amounts in Cdots. For instance, surface charge, UV-visible absorbance, emission intensity, quantum yield, photosensitization efficiency and singlet-oxygen generation were most effective at ethylenediamine/citric acid = 4. Moreover, strong conjugation of DOX to Cdots via π-π stacking and electrostatic interactions resulted in a high carrier efficiency and an effective drug loading and release. The results suggested that nitrogen-doped Cdots can be considered promising candidates to be used in a combination therapy involving photodynamic and anticancer strategies under the mutual effect with DOX.

8.
Materials (Basel) ; 15(13)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35806696

RESUMEN

Rosmarinic acid (RA), a caffeic acid derivative, has been loaded in polymeric nanoparticles made up of poly(lactic-co-glycolic acid) (PLGA) through a nano-emulsion templating process using the phase-inversion composition (PIC) method at room temperature. The obtained RA-loaded nanoparticles (NPs) were colloidally stable exhibiting average diameters in the range of 70-100 nm. RA was entrapped within the PLGA polymeric network with high encapsulation efficiencies and nanoparticles were able to release RA in a rate-controlled manner. A first-order equation model fitted our experimental data and confirmed the prevalence of diffusion mechanisms. Protein corona formation on the surface of NPs was assessed upon incubation with serum proteins. Protein adsorption induced an increase in the hydrodynamic diameter and a slight shift towards more negative surface charges of the NPs. The radical scavenging activity of RA-loaded NPs was also studied using the DPPH·assay and showed a dose-response relationship between the NPs concentration and DPPH inhibition. Finally, RA-loaded NPs did not affect the cellular proliferation of the human neuroblastoma SH-SY5Y cell line and promoted efficient cellular uptake. These results are promising for expanding the use of O/W nano-emulsions in biomedical applications.

9.
Soft Matter ; 18(26): 4963-4972, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35748523

RESUMEN

Herein, we describe the design and synthesis of a new variety of bio-based hydrogel films using a Cu(I)-catalyzed photo-click reaction. These films exhibited thermal-triggered swelling-deswelling and were constructed by crosslinking a triazide derivative of glycerol ethoxylate and dialkyne structures derived from isosorbide, a well-known plant-based platform molecule. The success of the click reaction was corroborated through infrared spectroscopy (FTIR) and the smooth surface of the obtained films was confirmed by scanning electron microscopy (SEM). The thermal characterization was carried out in terms of thermogravimetry (TGA) and differential scanning calorimetry (DSC), from which the decomposition onset and glass transition temperatures were determined, respectively. Additionally, mechanical properties of the samples were estimated by stress-strain experiments. Then, their swelling and deswelling properties were systematically examined in PBS buffer, revealing a thermoresponsive behavior that was successfully tested in the release of the anticancer drug doxorubicin. We also confirmed the non-cytotoxicity of these materials, which is a fundamental aspect for their potential use as drug carriers or tissue engineering matrices.


Asunto(s)
Hidrogeles , Isosorbida , Biomasa , Rastreo Diferencial de Calorimetría , Sistemas de Liberación de Medicamentos , Hidrogeles/química , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría
10.
Molecules ; 27(12)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35745067

RESUMEN

The development of oligonucleotide conjugates for in vivo targeting is one of the most exciting areas for oligonucleotide therapeutics. A major breakthrough in this field was the development of multifunctional GalNAc-oligonucleotides with high affinity to asialoglycoprotein receptors (ASGPR) that directed therapeutic oligonucleotides to hepatocytes. In the present study, we explore the use of G-rich sequences functionalized with one unit of GalNAc at the 3'-end for the formation of tetrameric GalNAc nanostructures upon formation of a parallel G-quadruplex. These compounds are expected to facilitate the synthetic protocols by providing the multifunctionality needed for the binding to ASGPR. To this end, several G-rich oligonucleotides carrying a TGGGGGGT sequence at the 3'-end functionalized with one molecule of N-acetylgalactosamine (GalNAc) were synthesized together with appropriate control sequences. The formation of a self-assembled parallel G-quadruplex was confirmed through various biophysical techniques such as circular dichroism, nuclear magnetic resonance, polyacrylamide electrophoresis and denaturation curves. Binding experiments to ASGPR show that the size and the relative position of the therapeutic cargo are critical for the binding of these nanostructures. The biological properties of the resulting parallel G-quadruplex were evaluated demonstrating the absence of the toxicity in cell lines. The internalization preferences of GalNAc-quadruplexes to hepatic cells were also demonstrated as well as the enhancement of the luciferase inhibition using the luciferase assay in HepG2 cell lines versus HeLa cells. All together, we demonstrate that tetramerization of G-rich oligonucleotide is a novel and simple route to obtain the beneficial effects of multivalent N-acetylgalactosamine functionalization.


Asunto(s)
Acetilgalactosamina , G-Cuádruplex , Acetilgalactosamina/química , Receptor de Asialoglicoproteína/metabolismo , Células HeLa , Hepatocitos , Humanos , Oligonucleótidos/metabolismo
12.
Pharmaceutics ; 13(11)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34834203

RESUMEN

Lipid nanocarriers, such as niosomes, are considered attractive candidates for non-viral gene delivery due to their suitable biocompatibility and high versatility. In this work, we studied the influence of incorporating chloroquine in niosomes biophysical performance, as well as the effect of non-ionic surfactant composition and protocol of incorporation in their biophysical performance. An exhaustive comparative evaluation of three niosome formulations differing in these parameters was performed, which included the analysis of their thermal stability, rheological behavior, mean particle size, dispersity, zeta potential, morphology, membrane packing capacity, affinity to bind DNA, ability to release and protect the genetic material, buffering capacity and ability to escape from artificially synthesized lysosomes. Finally, in vitro biological studies were, also, performed in order to determine the compatibility of the formulations with biological systems, their transfection efficiency and transgene expression. Results revealed that the incorporation of chloroquine in niosome formulations improved their biophysical properties and the transfection efficiency, while the substitution of one of the non-ionic surfactants and the phase of addition resulted in less biophysical variations. Of note, the present work provides several biophysical parameters and characterization strategies that could be used as gold standard for gene therapy nanosystems evaluation.

13.
Int J Nanomedicine ; 16: 5923-5935, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34475757

RESUMEN

BACKGROUND AND PURPOSE: Non-invasive imaging methodologies, especially nuclear imaging techniques, have undergone an extraordinary development over the last years. Interest in the development of innovative tracers has prompted the emergence of new nanomaterials with a focus on nuclear imaging and therapeutical applications. Among others, organic nanoparticles are of the highest interest due to their translational potential related to their biocompatibility and biodegradability. Our group has developed a promising new type of biocompatible nanomaterials, sphingomyelin nanoemulsions (SNs). The aim of this study is to explore the potential of SNs for nuclear imaging applications. METHODS: Ready-to-label SNs were prepared by a one-step method using lipid derivative chelators and characterized in terms of their physicochemical properties. Stability was assessed under storage and after incubation with human serum. Chelator-functionalized SNs were radiolabeled with 67Ga and 68Ga, and the radiochemical yield (RCY), radiochemical purity (RCP) and radiochemical stability (RCS) were determined. Finally, the biodistribution of 67/68Ga-SNs was evaluated in vivo and ex vivo. RESULTS: Here, we describe a simple and mild one-step method for fast and efficient radiolabeling of SNs with 68Ga and 67Ga radioisotopes. In vivo experiments showed that 67/68Ga-SNs can efficiently and indistinctly be followed up by PET and SPECT. Additionally, we proved that the biodistribution of the 67/68Ga-SNs can be conveniently modulated by modifying the surface properties of different hydrophilic polymers, and therefore the formulation can be further adapted to the specific requirements of different biomedical applications. CONCLUSION: This work supports 67/68Ga-SNs as a novel probe for nuclear imaging with tunable biodistribution and with great potential for the future development of nanotheranostics.


Asunto(s)
Tomografía de Emisión de Positrones , Esfingolípidos , Radioisótopos de Galio , Humanos , Radiofármacos , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único
14.
Carbohydr Polym ; 270: 118366, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34364611

RESUMEN

Cellulose nanocrystals (CNCs) have advantages as drug delivery carriers because of their biocompatibility and the presence of hydroxyl groups which favor chemical modification and drug binding. The present study describes the development of novel multifunctional rod-like CNCs-based carriers as therapeutic platforms: CNCs were hybridized with folic acid for actively targeting tumor cells, carbon dots (Cdots) for both imaging and photodynamic/photothermal treatments and doxorubicin (DOX) as an anticancer drug. Hybridized carriers displayed excellent drug-loading capacity. Moreover, Cdots-containing hybrids showed fluorescence and photosensitized singlet oxygen generation and photothermal behavior. Carriers exhibited pH-sensitive drug release because of changing interactions with DOX, and this release proved to be effective against in vitro cervical cancer cells, as evidenced by dose-dependent reduced cellular viabilities. Additionally, DOX release was promoted by light irradiation and the photodynamic behavior by reactive oxygen species was confirmed. These results demonstrate the potential of multifunctional CNCs-based carriers as platforms for multimodal photodynamic/photothermal-chemotherapy.


Asunto(s)
Celulosa/química , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Fotoquimioterapia/métodos , Terapia Fototérmica/métodos , Antineoplásicos/farmacología , Carbono/química , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Doxorrubicina/farmacología , Portadores de Fármacos/química , Liberación de Fármacos , Ácido Fólico/química , Ácido Fólico/farmacología , Células HeLa , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Fármacos Fotosensibilizantes/farmacología , Especies Reactivas de Oxígeno
15.
Molecules ; 26(6)2021 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-33804620

RESUMEN

Fluoropyrimidines, such as 5-fluorouracil (5-FU) and related prodrugs have been considered first-line chemotherapy agents for the treatment of colorectal cancer. However, poor specificity and tumor cell resistance remain major limiting bottlenecks. G-quadruplexes, have been suggested as preferred nanostructures for enhancing cellular uptake mediated by G-quadruplex binding proteins which are abundant at the membranes of some tumor cells. In the current study, we propose a new strategy to deliver 5-fluoro-2'-deoxyuridine (5-FdU) monophosphate, the main active drug from 5-FU derivatives that may circumvent the cellular mechanisms of FU-resistant cancer cells. Two G-quadruplexes delivery systems containing four and six G-tetrads ((TG4T) and (TG6T)) linked to a FdU oligonucleotide were synthesized. Biophysical studies show that the G-quadruplex parallel structures are not affected by the incorporation of the 5 units of FdU at the 5'-end. Internalization studies confirmed the ability of such G-quadruplex nanostructures to facilitate the transport of the FdU pentamer and increase its cytotoxic effect relative to conventional FU drug in FU-resistant colorectal cancer cells. These results suggest that FdU oligomers linked to G-quadruplex parallel sequences may be a promising strategy to deliver fluoropyrimidines to cancer cells.


Asunto(s)
Citotoxinas/farmacología , Desoxiuridina/análogos & derivados , Resistencia a Antineoplásicos/efectos de los fármacos , Fluorouracilo , G-Cuádruplex , Neoplasias/tratamiento farmacológico , Citotoxinas/química , Desoxiuridina/química , Desoxiuridina/farmacología , Células HT29 , Células HeLa , Humanos , Neoplasias/metabolismo , Neoplasias/patología
16.
Methods Mol Biol ; 2282: 119-136, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33928573

RESUMEN

Nucleic acid conjugates are promising drugs for treating gene-related diseases. Conjugating specific units like lipids, cell-penetrating peptides, polymers, antibodies, and aptamers either at the 3'- or 5'-termini of a siRNA duplex molecule has resulted in a plethora of siRNA bioconjugates with improved stabilities in bloodstream and better pharmacokinetic values than unmodified siRNAs. In this sense, lipid-siRNA conjugates have attracted a remarkable interest for their potential value in facilitating cellular uptake. In this chapter, we describe a series of protocols involving the synthesis of siRNA oligonucleotides carrying either neutral or cationic lipids at the 3'- and 5'-termini. The resulting lipid-siRNA conjugates are aimed to be used as exogenous effectors for inhibiting gene expression by RNA interference. A protocol for the formulation of lipid siRNA using sonication in the presence of serum is described yielding interesting transfection properties for cell culture without the use of transfecting agents.


Asunto(s)
Técnicas de Transferencia de Gen , Lípidos/química , Oligonucleótidos/síntesis química , Compuestos Organofosforados/química , Interferencia de ARN , ARN Interferente Pequeño/síntesis química , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Células HeLa , Humanos , Ratones , Oligonucleótidos/genética , Oligonucleótidos/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proyectos de Investigación , Sonicación , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Flujo de Trabajo
17.
Neurochem Int ; 147: 105005, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33667593

RESUMEN

Peripheral nerve injury (PNI) is a serious clinical health problem caused by the damage of peripheral nerves which results in neurological deficits and permanent disability. There are several factors that may cause PNI such as localized damage (car accident, trauma, electrical injury) and outbreak of the systemic diseases (autoimmune or diabetes). While various diagnostic procedures including X-ray, magnetic resonance imaging (MRI), as well as other type of examinations such as electromyography or nerve conduction studies have been efficiently developed, a full recovery in patients with PNI is in many cases deficient or incomplete. This is the reason why additional therapeutic strategies should be explored to favor a complete rehabilitation in order to get appropriate nerve injury regeneration. The use of biomaterials acting as scaffolds opens an interesting approach in regenerative medicine and tissue engineering applications due to their ability to guide the growth of new tissues, adhesion and proliferation of cells including the expression of bioactive signals. This review discusses the preparation and therapeutic strategies describing in vitro and in vivo experiments using graphene-based materials in the context of PNI and their ability to promote nerve tissue regeneration.


Asunto(s)
Grafito/uso terapéutico , Regeneración Nerviosa/efectos de los fármacos , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Nervio Ciático/efectos de los fármacos , Animales , Humanos , Regeneración Nerviosa/fisiología , Células de Schwann/efectos de los fármacos , Nervio Ciático/patología , Andamios del Tejido
18.
Int J Pharm ; 592: 120095, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33220382

RESUMEN

Cationic compounds have been described to readily penetrate cell membranes. Assigning positive charge to nanosystems, e.g. lipid nanoparticles, has been identified as a key feature to promote electrostatic binding and design ligand-based constructs for tumour targeting. However, their intrinsic high cytotoxicity has hampered their biomedical application. This paper seeks to establish which cationic compounds and properties are compelling for interface modulation, in order to improve the design of tumour targeted nanoparticles against glioblastoma. How can intrinsic features (e.g. nature, structure, conformation) shape efficacy outcomes? In the quest for safer alternative cationic compounds, we evaluate the effects of two novel glycerol-based lipids, GLY1 and GLY2, on the architecture and performance of nanostructured lipid carriers (NLCs). These two molecules, composed of two alkylated chains and a glycerol backbone, differ only in their polar head and proved to be efficient in reversing the zeta potential of the nanosystems to positive values. The use of unsupervised and supervised machine learning (ML) techniques unraveled their structural similarities: in spite of their common backbone, GLY1 exhibited a better performance in increasing zeta potential and cytotoxicity, while decreasing particle size. Furthermore, NLCs containing GLY1 showed a favorable hemocompatible profile, as well as an improved uptake by tumour cells. Summing-up, GLY1 circumvents the intrinsic cytotoxicity of a common surfactant, CTAB, is effective at increasing glioblastoma uptake, and exhibits encouraging anticancer activity. Moreover, the use of ML is strongly incited for formulation design and optimization.


Asunto(s)
Glioblastoma , Nanopartículas , Nanoestructuras , Algoritmos , Portadores de Fármacos/uso terapéutico , Glioblastoma/tratamiento farmacológico , Humanos , Aprendizaje Automático , Tamaño de la Partícula
19.
Int J Mol Sci ; 22(1)2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33374392

RESUMEN

Two G-quadruplex forming oligonucleotides [d(TG4T)4 and d(TG6T)4] were selected as two tetramolecular quadruplex nanostructures because of their demonstrated ability to be modified with hydrophobic molecules. This allowed us to synthesize two series of G-quadruplex conjugates that differed in the number of G-tetrads, as well as in the terminal position of the lipid modification. Both solution and solid-phase syntheses were carried out to yield the corresponding lipid oligonucleotide conjugates modified at their 3'- and 5'-termini, respectively. Biophysical studies confirmed that the presence of saturated alkyl chains with different lengths did not affect the G-quadruplex integrity, but increased the stability. Next, the G-quadruplex domain was added to an 18-mer antisense oligonucleotide. Gene silencing studies confirmed the ability of such G-rich oligonucleotides to facilitate the inhibition of target Renilla luciferase without showing signs of toxicity in tumor cell lines.


Asunto(s)
G-Cuádruplex , Lípidos/química , Nanoestructuras/química , Oligonucleótidos/genética , Animales , Biofisica , Línea Celular Tumoral , Dicroismo Circular , Células HEK293 , Células HeLa , Humanos , Luciferasas/metabolismo , Microscopía Fluorescente , Conformación de Ácido Nucleico , Oligonucleótidos/química , Oligonucleótidos Antisentido , Renilla/enzimología , Transfección
20.
Front Cell Infect Microbiol ; 10: 573348, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33194812

RESUMEN

The glycolytic enzyme and bacterial virulence factor of Listeria monocytogenes, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH, Lmo2459), ADP-ribosylated the small GTPase, Rab5a, and blocked phagosome maturation. This inhibitory activity localized within the NAD binding domain of GAPDH at the N-terminal 1-22 peptides, also conferred listeriosis protection when used in dendritic cell-based vaccines. In this study, we explore GAPDH of Listeria, Mycobacterium, and Streptococcus spp. taxonomic groups to search for epitopes that confer broad protection against pathogenic strains of these bacteria. GAPDH multivalent epitopes are selected if they induce inhibitory actions and wide-ranging immune responses. Proteomic isolation of GAPDH from dendritic cells infected with Listeria, Mycobacterium, or Streptococcus confirmed similar enzymatic, Rab5a inhibitory and immune stimulation abilities. We identified by bioinformatics and functional analyses GAPDH N-terminal 1-22 peptides from Listeria, Mycobacterium, and Streptococcus that shared 95% sequence homology, enzymatic activity, and B and T cell immune domains. Sera obtained from patients or mice infected with hypervirulent pathogenic Listeria, Mycobacterium, or Streptococcus presented high levels of anti-GAPDH 1-22 antibodies and Th2 cytokines. Monocyte derived dendritic cells from healthy donors loaded with GAPDH 1-22 peptides from Listeria, Mycobacterium, or Streptococcus showed activation patterns that correspond to cross-immunity abilities. In summary, GAPDH 1-22 peptides appeared as putative candidates to include in multivalent dendritic based vaccine platforms for Listeria, Mycobacterium, or Streptococcus.


Asunto(s)
Listeria , Mycobacterium , Animales , Epítopos , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Humanos , Ratones , Proteómica , Streptococcus , Vacunas Combinadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...