Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Mol Biol ; 113(1-3): 33-57, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37661236

RESUMEN

A multi-tiered transcriptional network regulates xylem differentiation and secondary cell wall (SCW) formation in plants, with evidence of both conserved and lineage-specific SCW network architecture. We aimed to elucidate the roles of selected R2R3-MYB transcription factors (TFs) linked to Eucalyptus wood formation by identifying genome-wide TF binding sites and direct target genes through an improved DAP-seq protocol combined with machine learning for target gene assignment (DAP-seq-ML). We applied this to five TFs including a well-studied SCW master regulator (EgrMYB2; homolog of AtMYB83), a repressor of lignification (EgrMYB1; homolog of AtMYB4), a TF affecting SCW thickness and vessel density (EgrMYB137; homolog of PtrMYB074) and two TFs with unclear roles in SCW regulation (EgrMYB135 and EgrMYB122). Each DAP-seq TF peak set (average 12,613 peaks) was enriched for canonical R2R3-MYB binding motifs. To improve the reliability of target gene assignment to peaks, a random forest classifier was developed from Arabidopsis DAP-seq, RNA-seq, chromatin, and conserved noncoding sequence data which demonstrated significantly higher precision and recall to the baseline method of assigning genes to proximal peaks. EgrMYB1, EgrMYB2 and EgrMYB137 predicted targets showed clear enrichment for SCW-related biological processes. As validation, EgrMYB137 overexpression in transgenic Eucalyptus hairy roots increased xylem lignification, while its dominant repression in transgenic Arabidopsis and Populus reduced xylem lignification, stunted growth, and caused downregulation of SCW genes. EgrMYB137 targets overlapped significantly with those of EgrMYB2, suggesting partial functional redundancy. Our results show that DAP-seq-ML identified biologically relevant R2R3-MYB targets supported by the finding that EgrMYB137 promotes SCW lignification in planta.

2.
Int J Mol Sci ; 23(9)2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35563457

RESUMEN

Wood (secondary xylem) formation is regulated by auxin, which plays a pivotal role as an integrator of developmental and environmental cues. However, our current knowledge of auxin-signaling during wood formation is incomplete. Our previous genome-wide analysis of Aux/IAAs in Eucalyptus grandis showed the presence of the non-canonical paralog member EgrIAA20 that is preferentially expressed in cambium. We analyzed its cellular localization using a GFP fusion protein and its transcriptional activity using transactivation assays, and demonstrated its nuclear localization and strong auxin response repressor activity. In addition, we functionally tested the role of EgrIAA20 by constitutive overexpression in Arabidopsis to investigate for phenotypic changes in secondary xylem formation. Transgenic Arabidopsis plants overexpressing EgrIAA20 were smaller and displayed impaired development of secondary fibers, but not of other wood cell types. The inhibition in fiber development specifically affected their cell wall lignification. We performed yeast-two-hybrid assays to identify EgrIAA20 protein partners during wood formation in Eucalyptus, and identified EgrIAA9A, whose ortholog PtoIAA9 in poplar is also known to be involved in wood formation. Altogether, we showed that EgrIAA20 is an important auxin signaling component specifically involved in controlling the lignification of wood fibers.


Asunto(s)
Arabidopsis , Eucalyptus , Arabidopsis/genética , Arabidopsis/metabolismo , Eucalyptus/genética , Eucalyptus/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Madera/metabolismo , Xilema/metabolismo
3.
Plant Mol Biol ; 109(1-2): 51-65, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35292886

RESUMEN

KEY MESSAGE: Our Induced Somatic Sector Analysis and protein-protein interaction experiments demonstrate that Eucalyptus grandis IAA13 regulates xylem fibre and vessel development, potentially via EgrIAA13 modules involving ARF2, ARF5, ARF6 and ARF19. Auxin is a crucial phytohormone regulating multiple aspects of plant growth and differentiation, including regulation of vascular cambium activity, xylogenesis and its responsiveness towards gravitropic stress. Although the regulation of these biological processes greatly depends on auxin and regulators of the auxin signalling pathway, many of their specific functions remain unclear. Therefore, the present study aims to functionally characterise Eucalyptus grandis AUX/INDOLE-3-ACETIC ACID 13 (EgrIAA13), a member of the auxin signalling pathway. In Eucalyptus and Populus, EgrIAA13 and its orthologs are preferentially expressed in the xylogenic tissues and downregulated in tension wood. Therefore, to further investigate EgrIAA13 and its function during xylogenesis, we conducted subcellular localisation and Induced Somatic Sector Analysis experiments using overexpression and RNAi knockdown constructs of EgrIAA13 to create transgenic tissue sectors on growing stems of Eucalyptus and Populus. Since Aux/IAAs interact with Auxin Responsive Factors (ARFs), in silico predictions of IAA13-ARF interactions were explored and experimentally validated via yeast-2-hybrid experiments. Our results demonstrate that EgrIAA13 localises to the nucleus and that downregulation of EgrIAA13 impedes Eucalyptus xylem fibre and vessel development. We also observed that EgrIAA13 interacts with Eucalyptus ARF2, ARF5, ARF6 and ARF19A. Based on these results, we conclude that EgrIAA13 is a regulator of Eucalyptus xylogenesis and postulate that the observed phenotypes are likely to result from alterations in the auxin-responsive transcriptome via IAA13-ARF modules such as EgrIAA13-EgrARF5. Our results provide the first insights into the regulatory role of EgrIAA13 during xylogenesis.


Asunto(s)
Arabidopsis , Eucalyptus , Populus , Arabidopsis/genética , Eucalyptus/genética , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/genética , Populus/metabolismo
4.
Int J Mol Sci ; 21(10)2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32408486

RESUMEN

Eucalypts are the most planted hardwoods worldwide. The availability of the Eucalyptus grandis genome highlighted many genes awaiting functional characterization, lagging behind because of the lack of efficient genetic transformation protocols. In order to efficiently generate knock-out mutants to study the function of eucalypts genes, we implemented the powerful CRISPR/Cas9 gene editing technology with the hairy roots transformation system. As proofs-of-concept, we targeted two wood-related genes: Cinnamoyl-CoA Reductase1 (CCR1), a key lignin biosynthetic gene and IAA9A an auxin dependent transcription factor of Aux/IAA family. Almost all transgenic hairy roots were edited but the allele-editing rates and spectra varied greatly depending on the gene targeted. Most edition events generated truncated proteins, the prevalent edition types were small deletions but large deletions were also quite frequent. By using a combination of FT-IR spectroscopy and multivariate analysis (partial least square analysis (PLS-DA)), we showed that the CCR1-edited lines, which were clearly separated from the controls. The most discriminant wave-numbers were attributed to lignin. Histochemical analyses further confirmed the decreased lignification and the presence of collapsed vessels in CCR1-edited lines, which are characteristics of CCR1 deficiency. Although the efficiency of editing could be improved, the method described here is already a powerful tool to functionally characterize eucalypts genes for both basic research and industry purposes.


Asunto(s)
Sistemas CRISPR-Cas , Eucalyptus/genética , Edición Génica/métodos , Genes de Plantas/genética , Raíces de Plantas/genética , Madera/genética , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Secuencia de Bases , Eucalyptus/metabolismo , Lignina/biosíntesis , Lignina/genética , Análisis Multivariante , Mutación , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Espectroscopía Infrarroja por Transformada de Fourier , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Madera/metabolismo
5.
Int J Mol Sci ; 21(8)2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32344718

RESUMEN

Eucalypts are the most planted trees worldwide, but most of them are frost sensitive. Overexpressing transcription factors for CRT-repeat binding factors (CBFs) in transgenic Eucalyptus confer cold resistance both in leaves and stems. While wood plays crucial roles in trees and is affected by environmental cues, its potential role in adaptation to cold stress has been neglected. Here, we addressed this question by investigating the changes occurring in wood in response to the overexpression of two CBFs, taking advantage of available transgenic Eucalyptus lines. We performed histological, biochemical, and transcriptomic analyses on xylem samples. CBF ectopic expression led to a reduction of both primary and secondary growth, and triggered changes in xylem architecture with smaller and more frequent vessels and fibers exhibiting reduced lumens. In addition, lignin content and syringyl/guaiacyl (S/G) ratio increased. Consistently, many genes of the phenylpropanoid and lignin branch pathway were upregulated. Most of the features of xylem remodeling induced by CBF overexpression are reminiscent of those observed after long exposure of Eucalyptus trees to chilling temperatures. Altogether, these results suggest that CBF plays a central role in the cross-talk between response to cold and wood formation and that the remodeling of wood is part of the adaptive strategies to face cold stress.


Asunto(s)
Respuesta al Choque por Frío , Factores de Unión al Sitio Principal/genética , Eucalyptus/genética , Expresión Génica , Factores de Transcripción/genética , Madera/anatomía & histología , Madera/genética , Factores de Unión al Sitio Principal/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Lignina/metabolismo , Fenotipo , Plantas Modificadas Genéticamente , Factores de Transcripción/metabolismo , Madera/química , Xilema/genética , Xilema/metabolismo
6.
Front Plant Sci ; 10: 1427, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31781143

RESUMEN

Willow (Salix spp. L.) species are fast-growing trees and shrubs that have attracted emergent attention for their potential as feedstocks for bioenergy and biofuel production, as well as for pharmaceutical and phytoremediation applications. This economic and environmental potential has propelled the creation of several genetic and genomic resources for Salix spp. Furthermore, the recent availability of an annotated genome for Salix purpurea has pinpointed novel candidate genes underlying economically relevant traits. However, functional studies have been stalled by the lack of rapid and efficient coupled regeneration-transformation systems for Salix purpurea and Salix spp. in general. In this report, we describe a fast and highly efficient hairy root transformation protocol for S. purpurea. It was effective for different explant sources and S. purpurea genotypes, with efficiencies between 63.4% and 98.7%, and the screening of the transformed hairy roots was easily carried out using the fluorescent marker DsRed. To test the applicability of this hairy root transformation system for gene functional analysis, we transformed hairy roots with the vector pGWAY-SpDRM2, where the gene SpDRM2 encoding a putative Domain Rearranged Methyltransferase (DRM) was placed under the control of the CaMV 35S constitutive promoter. Indeed, the transgenic hairy roots obtained exhibited significantly increased expression of SpDRM2 as compared to controls, demonstrating that this protocol is suitable for the medium/high-throughput functional characterization of candidate genes in S. purpurea and other recalcitrant Salix spp.

7.
Trends Plant Sci ; 24(11): 1052-1064, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31371222

RESUMEN

Although lignin is essential to ensure the correct growth and development of land plants, it may be an obstacle to the production of lignocellulosics-based biofuels, and reduces the nutritional quality of crops used for human consumption or livestock feed. The need to tailor the lignocellulosic biomass for more efficient biofuel production or for improved plant digestibility has fostered considerable advances in our understanding of the lignin biosynthetic pathway and its regulation. Most of the described regulators are transcriptional activators of lignin biosynthesis, but considerably less attention has been devoted to the repressors of this pathway. We provide a comprehensive overview of the molecular factors that negatively impact on the lignification process at both the transcriptional and post-transcriptional levels.


Asunto(s)
Biocombustibles , Lignina , Biomasa , Vías Biosintéticas , Pared Celular , Productos Agrícolas
8.
New Phytol ; 223(2): 766-782, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30887522

RESUMEN

Wood production in fast-growing Eucalyptus grandis trees is highly dependent on both potassium (K) fertilization and water availability but the molecular processes underlying wood formation in response to the combined effects of these two limiting factors remain unknown. E. grandis trees were submitted to four combinations of K-fertilization and water supply. Weighted gene co-expression network analysis and MixOmics-based co-regulation networks were used to integrate xylem transcriptome, metabolome and complex wood traits. Functional characterization of a candidate gene was performed in transgenic E. grandis hairy roots. This integrated network-based approach enabled us to identify meaningful biological processes and regulators impacted by K-fertilization and/or water limitation. It revealed that modules of co-regulated genes and metabolites strongly correlated to wood complex traits are in the heart of a complex trade-off between biomass production and stress responses. Nested in these modules, potential new cell-wall regulators were identified, as further confirmed by the functional characterization of EgMYB137. These findings provide new insights into the regulatory mechanisms of wood formation under stressful conditions, pointing out both known and new regulators co-opted by K-fertilization and/or water limitation that may potentially promote adaptive wood traits.


Asunto(s)
Eucalyptus/crecimiento & desarrollo , Potasio/farmacología , Biología de Sistemas , Árboles/crecimiento & desarrollo , Agua/farmacología , Madera/crecimiento & desarrollo , Biomasa , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Eucalyptus/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Metaboloma/efectos de los fármacos , Fenotipo , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma/genética , Árboles/efectos de los fármacos , Madera/efectos de los fármacos , Xilema/efectos de los fármacos , Xilema/genética , Xilema/crecimiento & desarrollo
9.
J Exp Bot ; 70(2): 497-506, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30605523

RESUMEN

The development of lysigenous aerenchyma starts with cell expansion and degradation of pectin from the middle lamella, leading to cell wall modification, and culminating with cell separation. Here we report that nutritional starvation of sugarcane induced gene expression along sections of the first 5 cm of the root and between treatments. We selected two candidate genes: a RAV transcription factor, from the ethylene response factors superfamily, and an endopolygalacturonase (EPG), a glycosyl hydrolase related to homogalacturonan hydrolysis from the middle lamella. epg1 and rav1 transcriptional patterns suggest they are essential genes at the initial steps of pectin degradation during aerenchyma development in sugarcane. Due to the high complexity of the sugarcane genome, rav1 and epg1 were sequenced from 17 bacterial artificial chromosome clones containing hom(e)ologous genomic regions, and the sequences were compared with those of Sorghum bicolor. We used one hom(e)olog sequence from each gene for transactivation assays in tobacco. rav1 was shown to bind to the epg1 promoter, repressing ß-glucuronidase activity. RAV repression upon epg1 transcription is the first reported link between ethylene regulation and pectin hydrolysis during aerenchyma formation. Our findings may help to elucidate cell wall degradation in sugarcane and therefore contribute to second-generation bioethanol production.


Asunto(s)
Pared Celular/metabolismo , Poligalacturonasa/metabolismo , Saccharum/enzimología , Factores de Transcripción/metabolismo , Proteínas de Plantas/metabolismo , Saccharum/genética , Saccharum/crecimiento & desarrollo
10.
ACS Synth Biol ; 8(2): 463-465, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30605615

RESUMEN

Re-engineering of transcriptional networks regulating secondary cell wall formation may allow the improvement of plant biomass in widely grown plantation crops such as Eucalyptus. However, there is currently a scarcity of freely available standardized biological parts (e.g., Phytobricks) compatible with Type IIS assembly approaches from forest trees, and there is a need to accelerate transcriptional network inference in nonmodel biomass crops. Here we describe the design and synthesis of a versatile three-panel biological parts collection of 221 secondary cell wall-related Eucalyptus grandis transcription factor coding sequences and 65 promoters that are compatible with GATEWAY, Golden Gate, MoClo, and GoldenBraid DNA assembly methods and generally conform to accepted Phytobrick syntaxes. This freely available resource is intended to accelerate synthetic biology applications in multiple plant biomass crops and enable reconstruction of secondary cell wall transcriptional networks using high-throughput assays such as DNA affinity purification sequencing (DAP-seq) and enhanced yeast one-hybrid (eY1H) screening.


Asunto(s)
Eucalyptus/metabolismo , Factores de Transcripción/metabolismo , Biomasa , Pared Celular/genética , Pared Celular/metabolismo , Eucalyptus/genética , Regiones Promotoras Genéticas/genética , Biología Sintética , Factores de Transcripción/genética
11.
Nat Plants ; 4(7): 440-452, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29915331

RESUMEN

Oaks are an important part of our natural and cultural heritage. Not only are they ubiquitous in our most common landscapes1 but they have also supplied human societies with invaluable services, including food and shelter, since prehistoric times2. With 450 species spread throughout Asia, Europe and America3, oaks constitute a critical global renewable resource. The longevity of oaks (several hundred years) probably underlies their emblematic cultural and historical importance. Such long-lived sessile organisms must persist in the face of a wide range of abiotic and biotic threats over their lifespans. We investigated the genomic features associated with such a long lifespan by sequencing, assembling and annotating the oak genome. We then used the growing number of whole-genome sequences for plants (including tree and herbaceous species) to investigate the parallel evolution of genomic characteristics potentially underpinning tree longevity. A further consequence of the long lifespan of trees is their accumulation of somatic mutations during mitotic divisions of stem cells present in the shoot apical meristems. Empirical4 and modelling5 approaches have shown that intra-organismal genetic heterogeneity can be selected for6 and provides direct fitness benefits in the arms race with short-lived pests and pathogens through a patchwork of intra-organismal phenotypes7. However, there is no clear proof that large-statured trees consist of a genetic mosaic of clonally distinct cell lineages within and between branches. Through this case study of oak, we demonstrate the accumulation and transmission of somatic mutations and the expansion of disease-resistance gene families in trees.


Asunto(s)
Genoma de Planta/genética , Quercus/genética , Evolución Biológica , ADN de Plantas/genética , Variación Genética/genética , Longevidad/genética , Mutación , Filogenia , Análisis de Secuencia de ADN
12.
Tree Physiol ; 38(3): 409-422, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28633295

RESUMEN

Although eucalypts are the most planted hardwood trees worldwide, the majority of them are frost sensitive. The recent creation of frost-tolerant hybrids such as Eucalyptus gundal plants (E. gunnii × E. dalrympleana hybrids), now enables the development of industrial plantations in northern countries. Our objective was to evaluate the impact of cold on the wood structure and composition of these hybrids, and on the biosynthetic and regulatory processes controlling their secondary cell-wall (SCW) formation. We used an integrated approach combining histology, biochemical characterization and transcriptomic profiling as well as gene co-expression analyses to investigate xylem tissues from Eucalyptus hybrids exposed to cold conditions. Chilling temperatures triggered the deposition of thicker and more lignified xylem cell walls as well as regulation at the transcriptional level of SCW genes. Most genes involved in lignin biosynthesis, except those specifically dedicated to syringyl unit biosynthesis, were up-regulated. The construction of a co-expression network enabled the identification of both known and potential new SCW transcription factors, induced by cold stress. These regulators at the crossroads between cold signalling and SCW formation are promising candidates for functional studies since they may contribute to the tolerance of E. gunnii × E. dalrympleana hybrids to cold.


Asunto(s)
Frío , Eucalyptus/fisiología , Regulación de la Expresión Génica de las Plantas , Xilema/fisiología , Pared Celular/metabolismo , Eucalyptus/genética , Perfilación de la Expresión Génica
13.
New Phytol ; 213(1): 287-299, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27500520

RESUMEN

Wood, also called secondary xylem, is a specialized vascular tissue constituted by different cell types that undergo a differentiation process involving deposition of thick, lignified secondary cell walls. The mechanisms needed to control the extent of lignin deposition depending on the cell type and the differentiation stage are far from being fully understood. We found that the Eucalyptus transcription factor EgMYB1, which is known to repress lignin biosynthesis, interacts specifically with a linker histone variant, EgH1.3. This interaction enhances the repression of EgMYB1's target genes, strongly limiting the amount of lignin deposited in xylem cell walls. The expression profiles of EgMYB1 and EgH1.3 overlap in xylem cells at early stages of their differentiation as well as in mature parenchymatous xylem cells, which have no or only thin lignified secondary cell walls. This suggests that a complex between EgMYB1 and EgH1.3 integrates developmental signals to prevent premature or inappropriate lignification of secondary cell walls, providing a mechanism to fine-tune the differentiation of xylem cells in time and space. We also demonstrate a role for a linker histone variant in the regulation of a specific developmental process through interaction with a transcription factor, illustrating that plant linker histones have other functions beyond chromatin organization.


Asunto(s)
Eucalyptus/metabolismo , Histonas/metabolismo , Lignina/biosíntesis , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Madera/metabolismo , Arabidopsis/genética , Diferenciación Celular , Núcleo Celular/metabolismo , Pared Celular/metabolismo , Eucalyptus/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Unión Proteica , Activación Transcripcional/genética , Xilema/crecimiento & desarrollo , Xilema/metabolismo
14.
Front Plant Sci ; 7: 1422, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27713753

RESUMEN

Comparative phylogenetic analyses of the R2R3-MYB transcription factor family revealed that five subgroups were preferentially found in woody species and were totally absent from Brassicaceae and monocots (Soler et al., 2015). Here, we analyzed one of these subgroups (WPS-I) for which no gene had been yet characterized. Most Eucalyptus members of WPS-I are preferentially expressed in the vascular cambium, the secondary meristem responsible for tree radial growth. We focused on EgMYB88, which is the most specifically and highly expressed in vascular tissues, and showed that it behaves as a transcriptional activator in yeast. Then, we functionally characterized EgMYB88 in both transgenic Arabidopsis and poplar plants overexpressing either the native or the dominant repression form (fused to the Ethylene-responsive element binding factor-associated Amphiphilic Repression motif, EAR). The transgenic Arabidopsis lines had no phenotype whereas the poplar lines overexpressing EgMYB88 exhibited a substantial increase in the levels of the flavonoid catechin and of some salicinoid phenolic glycosides (salicortin, salireposide, and tremulacin), in agreement with the increase of the transcript levels of landmark biosynthetic genes. A change in the lignin structure (increase in the syringyl vs. guaiacyl, S/G ratio) was also observed. Poplar lines overexpressing the EgMYB88 dominant repression form did not show a strict opposite phenotype. The level of catechin was reduced, but the levels of the salicinoid phenolic glycosides and the S/G ratio remained unchanged. In addition, they showed a reduction in soluble oligolignols containing sinapyl p-hydroxybenzoate accompanied by a mild reduction of the insoluble lignin content. Altogether, these results suggest that EgMYB88, and more largely members of the WPS-I group, could control in cambium and in the first layers of differentiating xylem the biosynthesis of some phenylpropanoid-derived secondary metabolites including lignin.

15.
Plant Biotechnol J ; 14(6): 1381-93, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26579999

RESUMEN

Eucalyptus are of tremendous economic importance being the most planted hardwoods worldwide for pulp and paper, timber and bioenergy. The recent release of the Eucalyptus grandis genome sequence pointed out many new candidate genes potentially involved in secondary growth, wood formation or lineage-specific biosynthetic pathways. Their functional characterization is, however, hindered by the tedious, time-consuming and inefficient transformation systems available hitherto for eucalypts. To overcome this limitation, we developed a fast, reliable and efficient protocol to obtain and easily detect co-transformed E. grandis hairy roots using fluorescent markers, with an average efficiency of 62%. We set up conditions both to cultivate excised roots in vitro and to harden composite plants and verified that hairy root morphology and vascular system anatomy were similar to wild-type ones. We further demonstrated that co-transformed hairy roots are suitable for medium-throughput functional studies enabling, for instance, protein subcellular localization, gene expression patterns through RT-qPCR and promoter expression, as well as the modulation of endogenous gene expression. Down-regulation of the Eucalyptus cinnamoyl-CoA reductase1 (EgCCR1) gene, encoding a key enzyme in lignin biosynthesis, led to transgenic roots with reduced lignin levels and thinner cell walls. This gene was used as a proof of concept to demonstrate that the function of genes involved in secondary cell wall biosynthesis and wood formation can be elucidated in transgenic hairy roots using histochemical, transcriptomic and biochemical approaches. The method described here is timely because it will accelerate gene mining of the genome for both basic research and industry purposes.


Asunto(s)
Eucalyptus/genética , Regulación de la Expresión Génica de las Plantas , Madera/genética , Biomasa , Pared Celular/química , Pared Celular/genética , Pared Celular/metabolismo , Eucalyptus/crecimiento & desarrollo , Eucalyptus/metabolismo , Perfilación de la Expresión Génica/métodos , Silenciador del Gen , Genoma de Planta , Lignina/genética , Lignina/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Técnicas de Cultivo de Tejidos , Madera/crecimiento & desarrollo , Madera/metabolismo , Xilema/genética , Xilema/crecimiento & desarrollo , Xilema/metabolismo
16.
Plant Sci ; 242: 310-329, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26566848

RESUMEN

The knowledge of the gene families mostly impacting cell wall digestibility variations would significantly increase the efficiency of marker-assisted selection when breeding maize and grass varieties with improved silage feeding value and/or with better straw fermentability into alcohol or methane. The maize genome sequence of the B73 inbred line was released at the end of 2009, opening up new avenues to identify the genetic determinants of quantitative traits. Colocalizations between a large set of candidate genes putatively involved in secondary cell wall assembly and QTLs for cell wall digestibility (IVNDFD) were then investigated, considering physical positions of both genes and QTLs. Based on available data from six RIL progenies, 59 QTLs corresponding to 38 non-overlapping positions were matched up with a list of 442 genes distributed all over the genome. Altogether, 176 genes colocalized with IVNDFD QTLs and most often, several candidate genes colocalized at each QTL position. Frequent QTL colocalizations were found firstly with genes encoding ZmMYB and ZmNAC transcription factors, and secondly with genes encoding zinc finger, bHLH, and xylogen regulation factors. In contrast, close colocalizations were less frequent with genes involved in monolignol biosynthesis, and found only with the C4H2, CCoAOMT5, and CCR1 genes. Close colocalizations were also infrequent with genes involved in cell wall feruloylation and cross-linkages. Altogether, investigated colocalizations between candidate genes and cell wall digestibility QTLs suggested a prevalent role of regulation factors over constitutive cell wall genes on digestibility variations.


Asunto(s)
Biocombustibles , Genoma de Planta/genética , Fitomejoramiento/métodos , Ensilaje , Zea mays/genética , Pared Celular/genética , Pared Celular/metabolismo , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Genes de Plantas/genética , Genómica/métodos , Redes y Vías Metabólicas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sitios de Carácter Cuantitativo/genética , Análisis de Secuencia de ADN , Zea mays/metabolismo
17.
Genome Biol Evol ; 7(4): 1068-81, 2015 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-25769696

RESUMEN

Plant organisms contain a large number of genes belonging to numerous multigenic families whose evolution size reflects some functional constraints. Sequences from eight multigenic families, involved in biotic and abiotic responses, have been analyzed in Eucalyptus grandis and compared with Arabidopsis thaliana. Two transcription factor families APETALA 2 (AP2)/ethylene responsive factor and GRAS, two auxin transporter families PIN-FORMED and AUX/LAX, two oxidoreductase families (ascorbate peroxidases [APx] and Class III peroxidases [CIII Prx]), and two families of protective molecules late embryogenesis abundant (LEA) and DNAj were annotated in expert and exhaustive manner. Many recent tandem duplications leading to the emergence of species-specific gene clusters and the explosion of the gene numbers have been observed for the AP2, GRAS, LEA, PIN, and CIII Prx in E. grandis, while the APx, the AUX/LAX and DNAj are conserved between species. Although no direct evidence has yet demonstrated the roles of these recent duplicated genes observed in E. grandis, this could indicate their putative implications in the morphological and physiological characteristics of E. grandis, and be the key factor for the survival of this nondormant species. Global analysis of key families would be a good criterion to evaluate the capabilities of some organisms to adapt to environmental variations.


Asunto(s)
Eucalyptus/genética , Evolución Molecular , Duplicación de Gen , Genes de Plantas , Familia de Multigenes , Proteínas Portadoras/genética , Proteínas del Choque Térmico HSP40/genética , Peroxidasas/genética , Proteínas de Plantas/genética , Duplicaciones Segmentarias en el Genoma , Factores de Transcripción/genética
18.
New Phytol ; 206(4): 1297-313, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25684249

RESUMEN

Lignin, a major component of secondary cell walls, hinders the optimal processing of wood for industrial uses. The recent availability of the Eucalyptus grandis genome sequence allows comprehensive analysis of the genes encoding the 11 protein families specific to the lignin branch of the phenylpropanoid pathway and identification of those mainly involved in xylem developmental lignification. We performed genome-wide identification of putative members of the lignin gene families, followed by comparative phylogenetic studies focusing on bona fide clades inferred from genes functionally characterized in other species. RNA-seq and microfluid real-time quantitative PCR (RT-qPCR) expression data were used to investigate the developmental and environmental responsive expression patterns of the genes. The phylogenetic analysis revealed that 38 E. grandis genes are located in bona fide lignification clades. Four multigene families (shikimate O-hydroxycinnamoyltransferase (HCT), p-coumarate 3-hydroxylase (C3H), caffeate/5-hydroxyferulate O-methyltransferase (COMT) and phenylalanine ammonia-lyase (PAL)) are expanded by tandem gene duplication compared with other plant species. Seventeen of the 38 genes exhibited strong, preferential expression in highly lignified tissues, probably representing the E. grandis core lignification toolbox. The identification of major genes involved in lignin biosynthesis in E. grandis, the most widely planted hardwood crop world-wide, provides the foundation for the development of biotechnology approaches to develop tree varieties with enhanced processing qualities.


Asunto(s)
Eucalyptus/genética , Genoma de Planta , Lignina/metabolismo , Simulación por Computador , Ambiente , Eucalyptus/enzimología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Hidroxilación , Metilación , Fenilanina Amoníaco-Liasa/genética , Filogenia , Propanoles/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN
19.
Plant Cell Physiol ; 56(4): 700-14, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25577568

RESUMEN

Auxin plays a pivotal role in various plant growth and development processes, including vascular differentiation. The modulation of auxin responsiveness through the auxin perception and signaling machinery is believed to be a major regulatory mechanism controlling cambium activity and wood formation. To gain more insights into the roles of key Aux/IAA gene regulators of the auxin response in these processes, we identified and characterized members of the Aux/IAA family in the genome of Eucalyptus grandis, a tree of worldwide economic importance. We found that the gene family in Eucalyptus is slightly smaller than that in Populus and Arabidopsis, but all phylogenetic groups are represented. High-throughput expression profiling of different organs and tissues highlighted several Aux/IAA genes expressed in vascular cambium and/or developing xylem, some showing differential expression in response to developmental (juvenile vs. mature) and/or to environmental (tension stress) cues. Based on the expression profiles, we selected a promising candidate gene, EgrIAA4, for functional characterization. We showed that EgrIAA4 protein is localized in the nucleus and functions as an auxin-responsive repressor. Overexpressing a stabilized version of EgrIAA4 in Arabidopsis dramatically impeded plant growth and fertility and induced auxin-insensitive phenotypes such as inhibition of primary root elongation, lateral root emergence and agravitropism. Interestingly, the lignified secondary walls of the interfascicular fibers appeared very late, whereas those of the xylary fibers were virtually undetectable, suggesting that EgrIAA4 may play crucial roles in fiber development and secondary cell wall deposition.


Asunto(s)
Eucalyptus/crecimiento & desarrollo , Eucalyptus/genética , Genoma de Planta , Ácidos Indolacéticos/metabolismo , Familia de Multigenes , Proteínas de Plantas/genética , Madera/crecimiento & desarrollo , Arabidopsis/genética , Diferenciación Celular , Núcleo Celular/metabolismo , Cromosomas de las Plantas/genética , Ambiente , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Estudios de Asociación Genética , Gravitropismo , Especificidad de Órganos/genética , Fenotipo , Filogenia , Desarrollo de la Planta , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Transporte de Proteínas , Análisis de Secuencia de ADN , Especificidad de la Especie , Fracciones Subcelulares/metabolismo , Transcripción Genética , Madera/genética , Xilema/citología
20.
New Phytol ; 206(4): 1337-50, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25385212

RESUMEN

NAC domain transcription factors regulate many developmental processes and stress responses in plants and vary widely in number and family structure. We analysed the characteristics and evolution of the NAC gene family of Eucalyptus grandis, a fast-growing forest tree in the rosid order Myrtales. NAC domain genes identified in the E. grandis genome were subjected to amino acid sequence, phylogenetic and motif analyses. Transcript abundance in developing tissues and abiotic stress conditions in E. grandis and E. globulus was quantified using RNA-seq and reverse transcription quantitative PCR (RT-qPCR). One hundred and eighty-nine E. grandis NAC (EgrNAC) proteins, arranged into 22 subfamilies, are extensively duplicated in subfamilies associated with stress response. Most EgrNAC genes form tandem duplicate arrays that frequently carry signatures of purifying selection. Sixteen amino acid motifs were identified in EgrNAC proteins, eight of which are enriched in, or unique to, Eucalyptus. New candidates for the regulation of normal and tension wood development and cold responses were identified. This first description of a Myrtales NAC domain family reveals an unique history of tandem duplication in stress-related subfamilies that has likely contributed to the adaptation of eucalypts to the challenging Australian environment. Several new candidates for the regulation of stress, wood formation and tree-specific development are reported.


Asunto(s)
Eucalyptus/genética , Evolución Molecular , Familia de Multigenes , Proteínas de Plantas/química , Proteínas de Plantas/genética , Secuencias de Aminoácidos , Cromosomas de las Plantas/genética , Secuencia Conservada , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Funciones de Verosimilitud , Filogenia , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA