Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Endocrinol ; 25(9): 1487-98, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21798999

RESUMEN

AMP-activated protein kinases (AMPK) are heterotrimeric, αßγ, serine/threonine kinases. The γ3-AMPK subunit is particularly interesting in muscle physiology because 1) it is specifically expressed in skeletal muscle, 2) α2ß2γ3 is the AMPK heterotrimer activated during exercise in humans, and 3) it is down-regulated in humans after a training period. However, mechanisms underlying this decrease of γ3-AMPK expression remained unknown. We investigated whether the expression of AMPK subunits and particularly that of γ3-AMPK are regulated by the PPARß pathway. We report that PPARß activation with GW0742 induces a rapid (2 h) and sustained down-regulation of γ3-AMPK expression both in mouse skeletal muscles and in culture myotubes. Concomitantly, phosphorylation levels of both AMPK and acetyl-coenzyme A carboxylase are rapidly modified. The γ3-AMPK down-regulation is also observed in muscles from young and adult transgenic mice with muscle-specific overexpression of peroxisome proliferator-activated receptor ß (PPARß). We showed that γ3-AMPK down-regulation is a rapid physiological muscle response observed in mouse after running exercise or fasting, two situations leading to PPARß activation. Finally, using C2C12, we demonstrated that dose and time-dependent down-regulation of γ3-AMPK expression upon GW0742 treatment, is due to decrease γ3-AMPK promoter activity.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Músculo Esquelético/enzimología , PPAR-beta/metabolismo , Subunidades de Proteína/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Animales , Regulación hacia Abajo/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/enzimología , Músculo Esquelético/efectos de los fármacos , PPAR-beta/genética , Condicionamiento Físico Animal , Regiones Promotoras Genéticas/genética , Subunidades de Proteína/genética , Inanición/enzimología , Tiazoles/farmacología , Transcripción Genética/efectos de los fármacos
2.
Pflugers Arch ; 458(5): 901-13, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19415321

RESUMEN

We reported recently that peroxisome proliferator-activated receptor beta (PPARbeta) activation promotes a calcineurin-dependent exercise-like remodelling characterised by increased numbers of oxidative fibres and capillaries. As physical exercise also induces myonuclear accretion, we investigated whether PPARbeta activation alters myonuclear density. Transgenic muscle-specific PPARbeta over-expression induced 14% increase of myonuclear density. Pharmacological PPARbeta activation promoted rapid and massive myonuclear accretion (20% increase after 48 h), which is dependent upon calcineurin/nuclear factor of activated T cells signalling pathway. In vivo bromodeoxyuridine labelling and proliferating cell nuclear antigen immunodetection revealed that PPARbeta activation did not promote cell proliferation, suggesting that the PPARbeta-promoted myonuclear accretion involves fusion of pre-existing muscle precursor cells to myofibres rather than cell division. Finally, we showed that in skeletal muscle, ageing led to a down-regulation of PPARbeta accompanied by decrease of both oxidative fibre number and myonuclear density. PPARbeta pharmacological activation counteracts, at least in part, the ageing-driven muscle remodelling.


Asunto(s)
Envejecimiento/fisiología , Núcleo Celular/fisiología , Músculo Esquelético/citología , PPAR-beta/fisiología , Envejecimiento/efectos de los fármacos , Envejecimiento/patología , Animales , Calcineurina/metabolismo , Inhibidores de la Calcineurina , División Celular/efectos de los fármacos , Fusión Celular , Citrato (si)-Sintasa/metabolismo , Ciclosporina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Ratones Transgénicos , Fibras Musculares de Contracción Rápida/citología , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Rápida/patología , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Factores de Transcripción NFATC/metabolismo , PPAR-beta/agonistas , Antígeno Nuclear de Célula en Proliferación/metabolismo , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/efectos de los fármacos , Succinato Deshidrogenasa/metabolismo , Tiazoles/farmacología
3.
Cell Mol Life Sci ; 64(19-20): 2459-64, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17876521

RESUMEN

Lipid homeostasis requires a strict balance between lipid intake and consumption. This balance is controlled by different systems that regulate food intake, energy storage and energy expenditure. This review focuses on the roles of peroxisome proliferator- activated receptors (PPARs) in some of these regulatory processes. PPARs are transcription factors that bind and are activated by fatty acids and fatty acid derivatives. They act as lipid sensors and adapt the metabolism and development of various tissues to lipid availability. Due to their actions on lipid metabolism, PPARs are bona fide therapeutic targets in the treatment of metabolic syndrome not only by affecting gene expression patterns in several tissues but also by inducing remodeling of tissues such as adipose or skeletal muscle.


Asunto(s)
Ácidos Grasos/metabolismo , Metabolismo de los Lípidos , Receptores Activados del Proliferador del Peroxisoma/fisiología , Animales , Homeostasis , Humanos , Lípidos/fisiología
4.
Diabetes Metab ; 31(1): 23-7, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15803109

RESUMEN

Peroxisome proliferator-activated receptors (PPAR) mediate some of the transcriptional effects of fatty acids and control many physiological functions, especially in the field of development and metabolism. Three isotypes are known, alpha, gamma, and B/delta. Roles of PPAR alpha and PPARgamma are now quite well-known, particularly since their pharmacologic ligands have been marketed, respectively the lipid-normalizing class of fibrates and the antidiabetic class of thiazolidinediones (glitazones). However, functions of PPARdelta are uncompletely known to date, but some recent data enlight its role in the regulation of fatty acid oxidation in several tissues, such as skeletal muscle and adipose tissue. Overexpression of PPARdelta using a transgenic murine model promotes an increase of muscle oxidative capability. This is accompanied by a redistribution of fatty acid flux, redirected from adipose tissue towards skeletal muscle. Finally, adipose mass is reduced, due to a decreased adipocyte size. These data strongly suggest that PPARdelta play a major role in the metabolic adaptations to western diet characterized by an excessive amount of saturated fat. Considering the metabolic properties of the two other PPAR isotypes, alpha and gamma, it is likely that the three PPAR isotypes have complementary effects in the pathophysiology of obesity and metabolic syndrome. Future therapeutical perspectives in this field should consider combined treatment, adding delta agonists (for all that their safety will be established) to the already available alpha and gamma agonists.


Asunto(s)
PPAR delta/fisiología , Animales , Arteriosclerosis/genética , Regulación de la Expresión Génica , Homeostasis , Humanos , Metabolismo de los Lípidos , Modelos Biológicos , PPAR delta/genética , Transcripción Genética
5.
Biochem Soc Trans ; 31(Pt 6): 1130-2, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14641010

RESUMEN

PPARdelta (peroxisome proliferator-activated receptor delta)-specific agonists decrease plasma lipids and insulinaemia in obese animals. As skeletal muscle is one of the major organs for fatty acid catabolism, we have investigated the roles of the nuclear receptor in the control of muscle development and lipid metabolism, by using two approaches. We have used C(2)C(12) myotubes in which the PPARdelta activity was altered by overexpression of either native or dominant-negative (DN) mutant forms of PPARdelta. Treatment of C(2)C(12) cells by specific PPARdelta agonists promotes expression of genes for proteins of fatty acid catabolism and increases fatty acid oxidation. These responses were increased in C(2)C(12)-PPARdelta cells and impaired in C(2)C(12)-PPARdeltaDN cells. We also constructed animal models with muscle-specific expression of PPARdelta (Cre/Lox approach). The effects of muscle-specific alteration of PPARdelta activity were studied on muscle development and metabolism as well as on body fat mass. These experiments indicated that PPARdelta plays a crucial role in myofibre typing determination and regulation of muscle oxidative capabilities, and that muscle-specific overexpression of the nuclear receptor leads to reduction of adipocyte size and body fat mass. These data strongly suggest that PPARdelta controls fatty acid catabolism in muscle and that its activation by synthetic agonists could prevent or correct obesity and type 2 diabetes.


Asunto(s)
Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Receptores Citoplasmáticos y Nucleares/fisiología , Factores de Transcripción/fisiología , Animales
6.
Biochem J ; 360(Pt 2): 305-12, 2001 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-11716758

RESUMEN

Fatty acid translocase (FAT/CD36) is a cell-surface glycoprotein that functions as a receptor/transporter for long-chain fatty acids (LCFAs), and interacts with other protein and lipid ligands. FAT/CD36 is expressed by various cell types, including platelets, monocytes/macrophages and endothelial cells, and tissues with an active LCFA metabolism, such as adipose, small intestine and heart. FAT/CD36 expression is induced during adipose cell differentiation and is transcriptionally up-regulated by LCFAs and thiazolidinediones in pre-adipocytes via a peroxisome-proliferator-activated receptor (PPAR)-mediated process. We isolated and analysed the murine FAT/CD36 promoter employing C(2)C(12)N cells directed to differentiate to either adipose or muscle. Transient transfection studies revealed that the 309 bp upstream from the start of exon 1 confer adipose specific activity. Sequence analysis of this DNA fragment revealed the presence of two imperfect direct repeat-1 elements. Electrophoretic mobility-shift assay demonstrated that these elements were peroxisome-proliferator-responsive elements (PPREs). Mutagenesis and transfection experiments indicated that both PPREs co-operate to drive strong promoter activity in adipose cells. We conclude that murine FAT/CD36 expression in adipose tissue is dependent upon transcriptional activation via PPARs through binding to two PPREs located at -245 to -233 bp and -120 to -108 bp from the transcription start site.


Asunto(s)
Adipocitos/citología , Adipocitos/enzimología , Regulación Enzimológica de la Expresión Génica , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Transportadores de Anión Orgánico/química , Transportadores de Anión Orgánico/genética , Regiones Promotoras Genéticas , Animales , Secuencia de Bases , Antígenos CD36/genética , Diferenciación Celular/genética , Línea Celular , Células Clonales , Clonación Molecular , Activación Enzimática/genética , Humanos , Glicoproteínas de Membrana/metabolismo , Ratones , Datos de Secuencia Molecular , Transportadores de Anión Orgánico/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/fisiología , Secuencias Repetitivas de Ácidos Nucleicos/fisiología , Elementos de Respuesta/fisiología , Células Madre/citología , Células Madre/enzimología , Células Madre/metabolismo , Relación Estructura-Actividad , Factores de Transcripción/genética , Factores de Transcripción/fisiología
7.
Curr Opin Clin Nutr Metab Care ; 4(5): 433-7, 2001 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-11568506

RESUMEN

Over the past 10 years it has become evident that fatty acids regulate cellular functions by modulating gene expression. Fatty acids and fatty acid metabolites exert some of their effects on gene expression by affecting the activity of nuclear transcription factors, peroxisome proliferator-activated receptors and sterol regulatory element binding protein type 1. The present review describes the latest developments in the field, with particular emphasis on the physiological roles of the various peroxisome proliferator-activated receptor isotypes, including their implication in the control of proliferation and differentiation of normal and malignant cells, and on the mechanisms implicated in the regulation of sterol regulatory element binding protein type 1 activity by polyunsaturated fatty acids.


Asunto(s)
Ácidos Grasos/fisiología , Regulación de la Expresión Génica/fisiología , Receptores Citoplasmáticos y Nucleares/fisiología , Factores de Transcripción/fisiología , División Celular , Ácidos Grasos Insaturados/farmacología , Humanos , Neoplasias/etiología , Receptores Citoplasmáticos y Nucleares/genética , Transducción de Señal , Factores de Transcripción/genética
9.
Prog Lipid Res ; 40(4): 269-81, 2001 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11412892

RESUMEN

Adipose tissue development takes place primarily around birth but adipose cell number can increase throughout life in response to nutritional changes. At the molecular level, adipogenesis is the result of transcriptional remodeling that leads to activation of a considerable number of genes. Several transcription factors act cooperatively and sequentially in this process. This article attempts to review the roles of peroxisome proliferator-activated receptors gamma and delta in the control of preadipocyte proliferation and differentiation during adipose tissue development or during the adaptive response of adipose tissue mass to high-fat feeding.


Asunto(s)
Adipocitos/metabolismo , Adipocitos/fisiología , Tejido Adiposo/metabolismo , Receptores Citoplasmáticos y Nucleares/fisiología , Transducción de Señal/fisiología , Factores de Transcripción/fisiología , Animales , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Diferenciación Celular , Células Cultivadas , Ácidos Grasos/metabolismo , Humanos , Insulina/metabolismo , Transcripción Genética
10.
J Biol Chem ; 275(49): 38768-73, 2000 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-10991946

RESUMEN

Fatty acids have been postulated to regulate adaptation of adipose mass to nutritional changes by controlling expression of genes implicated in lipid metabolism via activation of nuclear receptors. Ectopic expression of the nuclear receptors PPARgamma or PPARdelta promotes adipogenesis in fibroblastic cells exposed to thiazolidinediones or long-chain fatty acids. To investigate the role of PPARdelta in fatty acid regulation of gene expression and adipogenesis in a preadipose cellular context, we studied the effects of overexpressing the native receptor or the dominant-negative PPARdelta mutant in Ob1771 and 3T3-F442A cells. Overexpression of PPARdelta enhanced fatty acid induction of the adipose-related genes for fatty acid translocase, adipocyte lipid binding protein, and PPARgamma and fatty acid effects on terminal differentiation. A transactivation-deficient form of PPARdelta mutated in the AF2 domain severely reduced these effects. Findings are similar in Ob1771 or 3T3-F442A preadipose cells. These data demonstrate that PPARdelta plays a central role in fatty acid-controlled differentiation of preadipose cells. Furthermore, they suggest that modulation of PPARdelta expression or activity could affect adaptive responses of white adipose tissue to nutritional changes.


Asunto(s)
Adipocitos/citología , Adipocitos/fisiología , Diferenciación Celular/fisiología , Regulación de la Expresión Génica/fisiología , Proteínas de Neoplasias , Proteínas del Tejido Nervioso , Palmitatos/farmacología , Receptores Citoplasmáticos y Nucleares/fisiología , Factores de Transcripción/fisiología , Células 3T3 , Sustitución de Aminoácidos , Animales , Proteínas Portadoras/genética , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proteína de Unión a los Ácidos Grasos 7 , Proteínas de Unión a Ácidos Grasos , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Cinética , Ratones , Mutagénesis Sitio-Dirigida , Receptores Citoplasmáticos y Nucleares/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/genética , Proteínas Recombinantes/efectos de los fármacos , Proteínas Recombinantes/metabolismo , Factores de Transcripción/efectos de los fármacos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética/efectos de los fármacos , Activación Transcripcional , Transfección
11.
Biochem J ; 350 Pt 1: 93-8, 2000 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-10926831

RESUMEN

Nutritional long-chain fatty acids control adipose tissue mass by regulating the number and the size of adipocytes. It is now established that peroxisome-proliferator-activated receptors (PPARs) play crucial functions in the control of gene expression and the level of cell differentiation. PPARgamma, which is activated by specific prostanoids, is a key factor in activating terminal differentiation and adipogenesis. We have recently demonstrated that PPARdelta, once activated by fatty acids, drives the expression of a limited set of genes, including that encoding PPARgamma, thereby inducing adipose differentiation. Thus far, the mechanism of action of fatty acids in the control of preadipocyte proliferation has remained unknown. We show here that PPARdelta is directly implicated in fatty acid-induced cell proliferation. Ectopic expression of PPARdelta renders 3T3C2 cells capable of responding to treatment with long-chain fatty acids by a resumption of mitosis, and this effect is limited to a few days after confluence. This response is restricted to PPARdelta activators and, for fatty acids, takes place within the range of concentrations found to trigger differentiation of preadipocytes both in vitro and in vivo. Furthermore, the use of a mutated inactive PPARdelta demonstrated that transcriptional activity of the nuclear receptor is required to mediate fatty acid-induced proliferation. These data demonstrate that PPARdelta, as a transcription factor, is directly implicated in fatty acid-induced proliferation, and this could explain the hyperplastic development of adipose tissue that occurs in high-fat-fed animals.


Asunto(s)
División Celular/efectos de los fármacos , Ácidos Grasos/farmacología , Receptores Citoplasmáticos y Nucleares/fisiología , Factores de Transcripción/fisiología , Células 3T3 , Animales , Secuencia de Bases , Cartilla de ADN , Ratones , Receptores Citoplasmáticos y Nucleares/agonistas , Factores de Transcripción/agonistas , Transcripción Genética/fisiología
12.
J Biol Chem ; 274(31): 21920-5, 1999 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-10419513

RESUMEN

Nutritional long chain fatty acids control adipose tissue mass by regulating the number and the size of adipocytes. The molecular mechanisms implicated in this action of fatty acids remain poorly understood. It has been well established that peroxisome proliferator-activated receptor (PPAR) gamma, activated by specific prostanoids, plays a central role in the control of adipocyte gene expression and terminal differentiation. Thus far, the role of PPARdelta in the control of adipose tissue mass has remained unclear. Herein, we report the effects of ectopically expressed PPARdelta on the control of adipose-related gene expression and adipogenesis of 3T3C2 fibroblasts. Treatment of PPARdelta-expressing fibroblasts with fatty acids alone did not stimulate adipogenesis, whereas exposure of cells to a combination of fatty acids and PPARgamma activators promoted lipid accumulation and expression of a typical adipocyte program. At the molecular level, activation of PPARdelta by fatty acids induced transcription of the genes encoding fatty acid transporter, adipocyte lipid-binding protein, and PPARgamma. Subsequent activation of PPARgamma by specific agonists appeared to be required to promote terminal differentiation. These data demonstrate that PPARgamma gene expression is under the control of PPARdelta activated by fatty acids and could explain, at least partially, the adipogenic action of nutritional fatty acids.


Asunto(s)
Adipocitos/citología , Adipocitos/fisiología , Regulación de la Expresión Génica , Proteínas de Neoplasias , Proteínas del Tejido Nervioso , Receptores Citoplasmáticos y Nucleares/fisiología , Factores de Transcripción/fisiología , Transcripción Genética , Células 3T3 , Animales , Proteínas Portadoras/genética , Diferenciación Celular , Proteína de Unión a los Ácidos Grasos 7 , Proteínas de Unión a Ácidos Grasos , Ácidos Grasos/metabolismo , Fibroblastos/citología , Fibroblastos/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Cinética , Ratones , Proteína P2 de Mielina/genética , Palmitatos/farmacología , Biosíntesis de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Receptores Citoplasmáticos y Nucleares/genética , Proteínas Recombinantes/biosíntesis , Factores de Tiempo , Factores de Transcripción/genética , Transfección , Regulación hacia Arriba
14.
Mol Cell Biochem ; 192(1-2): 63-8, 1999 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-10331659

RESUMEN

During the last years, it has been clearly established that long-chain fatty acids act as modulators of gene expression in various tissues, such as adipose tissue, intestine and liver. This transcriptional action of fatty acids explains in part adaptation mechanisms of tissues to nutritional changes and especially to high-fat diets by increasing expression of proteins involved in lipid catabolism in liver and fatty acid uptake and utilization in other tissues. It is now clearly demonstrated that some of these transcriptional effects of fatty acids are mediated by activation of specific nuclear hormone receptors, called peroxisome proliferator-activated receptors (PPARs). These findings will be discussed with a special reference to control of gene expression in preadipocytes and adipose tissue development.


Asunto(s)
Adipocitos/fisiología , Cadherinas , Ácidos Grasos/fisiología , Regulación de la Expresión Génica , Transcripción Genética , Células 3T3 , Animales , Proteínas de la Membrana/metabolismo , Ratones , Homología de Secuencia de Ácido Nucleico , Células Madre/metabolismo , Factores de Tiempo
15.
J Lipid Res ; 39(10): 2039-47, 1998 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-9788250

RESUMEN

Fatty acid translocase (FAT/CD36) is a membrane protein putatively involved in the transmembrane transport of long-chain fatty acids. We tested the hypothesis that expression of this protein in H9c2, a rat heart cell line normally not expressing FAT, would increase cellular palmitate uptake. We were able to stably transfect H9c2 cells with FAT, yielding 15 cell lines showing varying levels of FAT expression. The uptake and metabolism of palmitate was first studied in the non-transfected H9c2 cells and in two FAT-transfected cell lines. In each case, uptake of palmitate was found to be linear in time for at least 30 min and the uptake rate was saturable with increasing palmitate concentrations. Using conditions under which the maximal capacity of intracellular palmitate handling was not fully utilized, we tested 7 out of 15 FAT-transfected cell lines with varying FAT expression levels. No significant correlation was found between the level of FAT expression and the rate of palmitate uptake. In conclusion, we found that palmitate uptake by H9c2 cells occurs mainly by passive diffusion. Fatty acid translocase (FAT) transfection did not significantly increase the palmitate uptake rate, raising the possibility that H9c2 cells lack a protein (or set of proteins) that acts as an obligatory partner of FAT in long-chain fatty acid transport from the extracellular compartment to the cytoplasm.


Asunto(s)
Expresión Génica , Glicoproteínas de Membrana/genética , Miocardio/enzimología , Transportadores de Anión Orgánico , Transfección , Animales , Northern Blotting , Southern Blotting , Western Blotting , Antígenos CD36 , Línea Celular , Difusión , Técnica del Anticuerpo Fluorescente , Cinética , Ácido Palmítico/metabolismo , Ratas
16.
Artículo en Inglés | MEDLINE | ID: mdl-9250611

RESUMEN

Long-chain fatty acids (LCFA) and thiazolidinediones are potent activators of differentiation of preadipose cells. These adipogenic effects are, at least in part, mediated by nuclear receptors of the peroxisome proliferator-activated receptor (PPAR) subfamily. This report describes the effects of these agents on the differentiation pathway of myoblasts. Exposure of C2C12 myoblasts to LCFA or thiazolidinediones prevents the formation of multinucleated myotubes and the expression of specific muscle markers, leading in parallel to the expression of a typical adipose differentiation program. Similar transdifferentiation also occurs in mouse muscle satellite cells maintained in primary cell culture. These observations indicate that PPAR activators, such as LCFA or thiazolidinediones, convert the differentiation pathway of myoblasts into that of adipoblasts. This phenomenon could explain the appearance of adipocytes into muscle which occurs in some pathological states characterized by an increase of fatty acid disposal, such as obesity or mitochondrial myopathy.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Ácidos Grasos/farmacología , Músculos/citología , Tiazoles/farmacología , Adipocitos/citología , Adipocitos/efectos de los fármacos , Animales , Línea Celular , Ratones , Receptores Citoplasmáticos y Nucleares/fisiología , Células Madre/citología , Factores de Transcripción/fisiología
17.
Biochem J ; 314 ( Pt 2): 541-6, 1996 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-8670068

RESUMEN

During fasting, a reduction in lipoprotein lipase (LPL) activity has been observed in rat fat pad with no change in enzyme mass, whereas LPL mRNA and synthesis are increased, suggesting that insulin and/or fatty acids (FA) regulate LPL activity post-translationaly [Doolittle, Ben-Zeev, Elovson, Martin and Kirchgessner (1990) J. Biol. Chem. 265, 4570-4577]. To examine the role of FA, either preadipose Ob1771 cells or Ob1771 and 3T3-F442A adipose cells were exposed to long-chain FA and to 2-bromopalmitate, a non-metabolized FA. A rapid (2-8 h) and dose-dependent increase (up to 6-fold) in LPL mRNA occurred, primarily due to increased transcription, which is accompanied by a decrease (down to 4-fold) in LPL cellular activity. Under these conditions, secretion of active LPL was nearly abolished. Removal of FA led to full recovery of LPL activity. LPL gene expression in 3T3-C2 fibroblasts was not affected by FA treatment. However fatty acid-activated receptor transfected-3T3-C2 cells, which show FA responsiveness, had increased LPL gene expression upon FA addition. LPL synthesis and cellular content appeared unaffected by FA treatment, whereas secretion of LPL was inhibited. These results indicate that FA regulate the post-translational processing of LPL. It is proposed that the regulation of LPL activity by FA is important with regard to the fine-tuning of FA entry into adipocytes during fasting/feeding periods.


Asunto(s)
Adipocitos/enzimología , Ácidos Grasos/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Lipoproteína Lipasa/genética , Células 3T3 , Animales , Lipoproteína Lipasa/metabolismo , Ratones
19.
J Biol Chem ; 270(47): 28183-7, 1995 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-7499310

RESUMEN

Fatty acids and thiazolidinediones act as potent activators of the adipose differentiation program in established preadipose cell lines. In this report, the effects of these agents on the differentiation pathway of myoblasts have been investigated. Exposure of C2C12N myoblasts (a subclone of the C2C12 cell line) to thiazolidinediones or fatty acids prevents the expression of myogenin, alpha-actin, and creatine kinase, thus abolishing the formation of multinucleated myotubes. These treatments lead in parallel to the expression of a typical adipose differentiation program including acquisition of adipocyte morphology and activation of adipose-related genes. A similar transition toward the adipose differentiation pathway also occurs in mouse muscle satellite cells maintained in primary culture. Thiazolidinediones exert their adipogenic effects only in non-terminally differentiated myoblasts; myotubes are insensitive to the compounds. Continuous exposure to inducers after growth arrest is not required to maintain the adipose phenotype, but proliferation of adipose-like C2C12N cells leads to a complete reversion toward undifferentiated cells able to undergo either myogenic or adipogenic differentiation depending on the composition of culture medium. These results indicate that adipogenic inducers, such as thiazolidinediones or fatty acids, specifically convert the differentiation pathway of myoblasts into that of adipoblasts.


Asunto(s)
Tejido Adiposo/citología , Diferenciación Celular/efectos de los fármacos , Ácidos Grasos no Esterificados/farmacología , Expresión Génica/efectos de los fármacos , Hipoglucemiantes/farmacología , Músculos/citología , Proteínas de Neoplasias , Proteínas del Tejido Nervioso , Tiazoles/farmacología , Tiazolidinedionas , Ácido 5,8,11,14-Eicosatetrainoico/farmacología , Actinas/biosíntesis , Animales , Biomarcadores , Proteínas Portadoras/biosíntesis , División Celular/efectos de los fármacos , Cromanos/farmacología , Células Clonales , Creatina Quinasa/biosíntesis , Proteína de Unión a los Ácidos Grasos 7 , Proteínas de Unión a Ácidos Grasos , Glicerolfosfato Deshidrogenasa/biosíntesis , Ácido Linoleico , Ácidos Linoleicos/farmacología , Ratones , Músculos/efectos de los fármacos , Músculos/metabolismo , Proteína P2 de Mielina/biosíntesis , Miogenina/biosíntesis , Ácido Palmítico , Ácidos Palmíticos/farmacología , Fenotipo , Pioglitazona , Rosiglitazona , Troglitazona
20.
J Biol Chem ; 270(5): 2367-71, 1995 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-7836471

RESUMEN

Exposure of preadipocytes to long chain fatty acids induces expression of several gene markers of adipocyte differentiation. This report describes the cloning, from a preadipocyte library, of a cDNA encoding a fatty acid-activated receptor, FAAR. The cDNA had the characteristics and ligand-binding domains of nuclear hormone receptors and encoded a 440 amino acid protein related to peroxisome proliferator-activated receptors, PPAR. The deduced protein sequence was 88% homologous to that of hNUC I, isolated from human osteosarcoma cells. FAAR mRNA was abundant in adipose tissue, intestine, brain, heart, and skeletal muscles and less abundant in kidney, liver, testis, and spleen. The mRNA was undetectable in growing Ob1771 and 3T3-F442A preadipocytes, was strongly induced early during differentiation, and was increased by fatty acid. Transcription assays using hybrid receptor showed strong stimulation by fatty acid and weaker induction by fibrates. Transfection of 3T3-C2 fibroblasts, with a FAAR expression vector, conferred fatty acid inducibility of the adipocyte lipid-binding protein and the fatty acid transporter. Transcriptional induction of these genes exhibited inducer specificity identical to that described in preadipocytes. In summary, the data indicate that FAAR is likely a mediator of fatty acid transcriptional effects in preadipocytes.


Asunto(s)
Adipocitos/fisiología , Ácidos Grasos/farmacología , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/genética , Factores de Transcripción/química , Factores de Transcripción/genética , Animales , Secuencia de Bases , Diferenciación Celular , Clonación Molecular , ADN Complementario/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Ratones , Datos de Secuencia Molecular , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/metabolismo , ARN Mensajero/genética , Secuencias Reguladoras de Ácidos Nucleicos , Distribución Tisular , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...