Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 14(8)2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-36015316

RESUMEN

Poly(lactic-co-glycolic acid) (PLGA) nanoparticle-based drug delivery systems are known to offer a plethora of potential therapeutic benefits. However, challenges related to large-scale manufacturing, such as the difficulty of reproducing complex formulations and high manufacturing costs, hinder their clinical and commercial development. In this context, a reliable manufacturing technique suitable for the scale-up production of nanoformulations without altering efficacy and safety profiles is highly needed. In this paper, we develop an inline sonication process and adapt it to the industrial scale production of immunomodulating PLGA nanovaccines developed using a batch sonication method at the laboratory scale. The investigated formulations contain three distinct synthetic peptides derived from the carcinogenic antigen New York Esophageal Squamous Cell Carcinoma-1 (NY-ESO-1) together with an invariant natural killer T-cell (iNKT) activator, threitolceramide-6 (IMM60). Process parameters were optimized to obtain polymeric nanovaccine formulations with a mean diameter of 150 ± 50 nm and a polydispersity index <0.2. Formulation characteristics, including encapsulation efficiencies, release profiles and in vitro functional and toxicological profiles, are assessed and statistically compared for each formulation. Overall, scale-up formulations obtained by inline sonication method could replicate the colloidal and functional properties of the nanovaccines developed using batch sonication at the laboratory scale. Both types of formulations induced specific T-cell and iNKT cell responses in vitro without any toxicity, highlighting the suitability of the inline sonication method for the continuous scale-up of nanomedicine formulations in terms of efficacy and safety.

2.
Pharmaceutics ; 14(2)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35214009

RESUMEN

Despite the efficacy and potential therapeutic benefits that poly(lactic-co-glycolic acid) (PLGA) nanomedicine formulations can offer, challenges related to large-scale processing hamper their clinical and commercial development. Major hurdles for the launch of a polymeric nanocarrier product on the market are batch-to-batch variations and lack of product consistency in scale-up manufacturing. Therefore, a scalable and robust manufacturing technique that allows for the transfer of nanomedicine production from the benchtop to an industrial scale is highly desirable. Downstream processes for purification, concentration, and storage of the nanomedicine formulations are equally indispensable. Here, we develop an inline sonication process for the production of polymeric PLGA nanomedicines at the industrial scale. The process and formulation parameters are optimized to obtain PLGA nanoparticles with a mean diameter of 150 ± 50 nm and a small polydispersity index (PDI < 0.2). Downstream processes based on tangential flow filtration (TFF) technology and lyophilization for the washing, concentration, and storage of formulations are also established and discussed. Using the developed manufacturing and downstream processing technologies, production of two PLGA nanoformulations encasing ritonavir and celecoxib was achieved at 84 g/h rate. As a measure of actual drug content, encapsulation efficiencies of 49.5 ± 3.2% and 80.3 ± 0.9% were achieved for ritonavir and celecoxib, respectively. When operated in-series, inline sonication and TFF can be adapted for fully continuous, industrial-scale processing of PLGA-based nanomedicines.

3.
Int J Pharm ; 605: 120807, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34144133

RESUMEN

Nanomedicines based on poly(lactic-co-glycolic acid) (PLGA) carriers offer tremendous opportunities for biomedical research. Although several PLGA-based systems have already been approved by both the Food and Drug Administration (FDA) and the European Medicine Agency (EMA), and are widely used in the clinics for the treatment or diagnosis of diseases, no PLGA nanomedicine formulation is currently available on the global market. One of the most impeding barriers is the development of a manufacturing technique that allows for the transfer of nanomedicine production from the laboratory to an industrial scale with proper characterization and quality control methods. This review provides a comprehensive overview of the technologies currently available for the manufacturing and analysis of polymeric nanomedicines based on PLGA nanoparticles, the scale-up challenges that hinder their industrial applicability, and the issues associated with their successful translation into clinical practice.


Asunto(s)
Nanomedicina , Nanopartículas , Industrias
4.
RSC Adv ; 11(57): 36116-36124, 2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-35492790

RESUMEN

Efficient intracellular drug delivery in nanomedicine strongly depends on ways to induce cellular uptake. Conjugation of nanoparticles (NPs) with cell-penetrating peptides (CPPs) is a known means to induce uptake via endocytosis. Here, we functionalized NPs consisting of either poly(d,l-lactide-co-glycolide) (PLGA) or polyethene glycol (PEG)-PLGA block-copolymer with a lactoferrin-derived cell-penetrating peptide (hLF). To enhance the association between the peptide and the polymer NPs, we tested a range of acyl moieties for N-terminal acylation of the peptide as a means to promote noncovalent interactions. Acyl moieties differed in chain length and number of acyl chains. Peptide-functionalized NPs were characterized for nanoparticle size, overall net charge, storage stability, and intracellular uptake. Coating particles with a palmitoylated hLF resulted in minimal precipitation after storage at -20C and homogeneous particle size (<200 nm). Palmitoyl-hLF coated NPs showed enhanced delivery in different cells in comparison to NPs lacking functionalization. Moreover, in comparison to acetyl-hLF, palmitoyl-hLF was also suited for coating and enhancing the cellular uptake of PEG-PLGA NPs.

5.
Int J Pharm ; 550(1-2): 140-148, 2018 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-30144511

RESUMEN

The clinical and commercial development of polymeric sub-micron size formulations based on poly(lactic-co-glycolic acid) (PLGA) particles is hampered by the challenges related to their good manufacturing practice (GMP)-compliant, scale-up production without affecting the formulation specifications. Continuous process technologies enable large-scale production without changing the process or formulation parameters by increasing the operation time. Here, we explore three well-established process technologies regarding continuity for the large-scale production of sub-micron size PLGA particles developed at the lab scale using a batch method. We demonstrate optimization of critical process and formulation parameters for high-shear mixing, high-pressure homogenization and microfluidics technologies to obtain PLGA particles with a mean diameter of 150-250 nm and a small polydispersity index (PDI, ≤0.2). The most influential parameters on the particle size distribution are discussed for each technique with a critical evaluation of their suitability for GMP production. Although each technique can provide particles in the desired size range, high-shear mixing is found to be particularly promising due to the availability of GMP-ready equipment and large throughput of production. Overall, our results will be of great guidance for establishing continuous process technologies for the GMP-compliant, large-scale production of sub-micron size PLGA particles, facilitating their commercial and clinical development.


Asunto(s)
Nanopartículas/química , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Química Farmacéutica/métodos , Microfluídica/métodos
6.
ACS Nano ; 8(5): 4500-9, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24758721

RESUMEN

Small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM) were used to study orientation patterns of two polyphilic liquid crystals (LC) confined to cylindrical pores of anodic aluminum oxide (AAO). The hierarchical hybrid systems had the LC honeycomb (lattice parameter 3.5-4 nm) inside the pores of the AAO honeycomb (diameters 60 and 400 nm). By conducting complete reciprocal space mapping using SAXS, we conclude that the columns of both compounds align in planes normal to the AAO pore axis, with a specific crystallographic direction of the LC lattice aligning strictly parallel to the pore axis. AFM of LC-containing AAO fracture surfaces further revealed that the columns of the planar anchoring LC (compound 1) formed concentric circles in the plane normal to the pore axis near the AAO wall. Toward the pore center, the circles become anisometric "racetrack" loops consisting of two straight segments and two semicircles. This mode compensates for slight ellipticity of the pore cross section. Indications are, however, that for perfectly circular pores, circular shape is maintained right to the center of the pore, the radius coming down to the size of a molecule. For the homeotropically anchoring compound 2, the columns are to the most part straight and parallel to each other, arranged in layers normal to the AAO pore axis, like logs in an ordered pile. Only near the pore wall the columns splay somewhat. In both cases, columns are confined to layers strictly perpendicular to the AAO pore axis, and there is no sign of escape to the third dimension or of axial orientation, the latter having been reported previously for some discotic LCs. The main cause of the two new LC configurations, the "racetrack" and the "logpile", and of their difference from those of confined nematic LC, is the very high splay energy and low bend energy of columnar phases.

7.
Nano Lett ; 9(9): 3106-10, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19655719

RESUMEN

An effective and low-cost method to fabricate hexagonally patterned, vertically aligned Si/Ge superlattice nanowires with diameters below 20 nm is presented. By combining the growth of Si/Ge superlattices by molecular beam epitaxy, prepatterning the substrate by anodic aluminum oxide masks, and finally metal-assisted chemical wet etching, this method generates highly ordered hexagonally patterned nanowires. This technique allows the fabrication of nanowires with a high area density of 10(10) wires/cm(2), including the control of their diameter and length.


Asunto(s)
Germanio/química , Nanocables/química , Silicio/química , Óxido de Aluminio/química , Membranas Artificiales , Nanotecnología , Nanocables/ultraestructura , Tamaño de la Partícula , Semiconductores , Plata/química , Propiedades de Superficie
8.
Nano Lett ; 8(7): 1954-9, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18507449

RESUMEN

Ordered nanofiber arrays are a promising material platform for artificial adhesive structures, tissue engineering, wound dressing, sensor arrays, and self-cleaning surfaces. Their production via self-ordered porous alumina hard templates serving as shape-defining molds is well-established. However, their release requires the destruction of the hard templates, the fabrication of which is costly and time-consuming, by wet-chemical etching steps with acids or bases. We report the nondestructive mechanical extraction of arrays of cross-linked polyacrylate nanofibers from thus recyclable self-ordered nanoporous alumina hard templates. Silica replicas of the latter were synthesized using the extricated nanofiber arrays as secondary molds that could be mechanically detached from the molded material. The approach reported here, which can be combined with microstructuring, may pave the way for the high-throughput production of both functional nanofiber arrays and ordered nanoporous membranes consisting of a broad range of material systems.


Asunto(s)
Resinas Acrílicas/química , Óxido de Aluminio/química , Reactivos de Enlaces Cruzados/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Polímeros/química , Microscopía Electrónica de Rastreo , Porosidad
9.
Small ; 3(6): 993-1000, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17352430

RESUMEN

The fabrication of one-dimensional (1D) nanostructures and microstructures inside the pores of porous templates is intensively investigated. The release of these structures is commonly accomplished by etching and destroying the templates. The 1D nanostructures and microstructures tend to condense because of the occurrence of capillary forces during drying of the specimens. It is shown that highly ordered arrays of polymer microfibers can be easily detached from silanized porous templates by mechanical lift-off. This procedure leaves the templates intact, thus allowing their recycling, and does not involve the use of solutions or solvents, thus circumventing condensation. Therefore, mechanical lift-off may enable the up-scaling of template-based approaches to the fabrication of highly ordered assemblies of 1D nanostructures and microstructures.


Asunto(s)
Nanoestructuras/química , Poliestirenos/química , Polivinilos/química , Microscopía Electrónica de Rastreo , Porosidad , Dióxido de Silicio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...