Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(17): 13078-13086, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38628110

RESUMEN

Fluorescence labeling of cells is a versatile tool used to study cell behavior, which is of significant importance in biomedical sciences. Fluorescent photoconvertible markers based on polymer microcapsules have been recently considered as efficient and perspective ones for long-term tracking of individual cells. However, the dependence of photoconversion conditions on the polymeric capsule structure is still not sufficiently clear. Here, we have studied the structural and spectral properties of fluorescent photoconvertible polymeric microcapsules doped with Rhodamine B and irradiated using a pulsed laser in various regimes, and shown the dependence between the photoconversion degree and laser irradiation intensity. The effect of microcapsule composition on the photoconversion process was studied by monitoring structural changes in the initial and photoconverted microcapsules using X-ray diffraction analysis with synchrotron radiation source, and Fourier transform infrared, Raman and fluorescence spectroscopy. We demonstrated good biocompatibility of free-administered initial and photoconverted microcapsules through long-term monitoring of the RAW 264.7 monocyte/macrophage cells with unchanged viability. These data open new perspectives for using the developed markers as safe and precise cell labels with switchable fluorescent properties.


Asunto(s)
Colorantes Fluorescentes , Polímeros , Rodaminas , Ratones , Animales , Polímeros/química , Rodaminas/química , Colorantes Fluorescentes/química , Células RAW 264.7 , Supervivencia Celular/efectos de los fármacos , Cápsulas/química , Espectrometría de Fluorescencia , Procesos Fotoquímicos , Espectroscopía Infrarroja por Transformada de Fourier
3.
Cytometry A ; 103(11): 868-880, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37455600

RESUMEN

Photoacoustic flow cytometry is one of the most effective approaches to detect "alien" objects in the bloodstream, including circulating tumor cells, blood clots, parasites, and emboli. However, the possibility of detecting high-amplitude signals from these objects against the background of blood depends on the parameters of the laser pulse. So, the dependencies of photoacoustic signals amplitude and number on laser pulse energy (5-150 µJ), pulse length (1, 2, 5 ns), and pulse repetition rate (2, 5, 10 kHz) for the melanoma cells were investigated. First, the PA responses of a melanoma cell suspension in vitro were measured to directly assess the efficiency of converting laser light into an acoustic signal. After it, the same dependence with the developed murine model based on constant rate melanoma cell injection into the animal blood flow was tested. Both in vivo and in vitro experiments show that signal generation efficiency increases with laser pulse energy above 15 µJ. Shorter pulses, especially 1 ns, provide more efficient signal generation as well as higher pulse rates. A higher pulse rate also provides more efficient signal generation, but also leads to overheating of the skin. The results show the limits where the photoacoustic flow cytometry system can be effectively used for the detection of circulating tumor cells in undiluted blood both for in vitro experiments and for in vivo murine models.


Asunto(s)
Melanoma , Células Neoplásicas Circulantes , Ratones , Animales , Citometría de Flujo/métodos , Células Neoplásicas Circulantes/patología , Rayos Láser , Melanoma/patología , Análisis Espectral
4.
J Biophotonics ; 16(11): e202200339, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37345342

RESUMEN

Hematomas resulted from trauma are very common, and the efficacy of existing treatment techniques is limited. Phototherapy can be used to expedite healing and improve the appearance of the damaged tissue. Efficient phototherapy requires determination of chromophore composition in hematoma, which can be provided by the optoacoustic (OA) technique, as it combines high spatial resolution and optical contrast. Here, we conducted experiments on photodegradation of bilirubin in gelatin slin phantoms. We have demonstrated that the OA technique allows monitoring of bilirubin concentration during photodegradation, and also distinguishing bilirubin concentration in depth. The obtained results suggest that OA monitoring may be used for efficient hematoma phototherapy.


Asunto(s)
Bilirrubina , Técnicas Fotoacústicas , Humanos , Bilirrubina/metabolismo , Fotólisis , Fototerapia/métodos , Hematoma
5.
Nanomaterials (Basel) ; 13(8)2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37110897

RESUMEN

Gold nanoparticles are widely used in laser biomedical applications due to their favorable properties, mainly localized plasmon resonance. However, laser radiation can cause a change in the shape and size of plasmonic nanoparticles, thus resulting in an unwanted reduction of their photothermal and photodynamic efficiency due to a drastic alteration of optical properties. Most previously reported experiments were carried out with bulk colloids where different particles were irradiated by different numbers of laser pulses, thus making it difficult to accurately evaluate the laser power photomodification (PM) threshold. Here, we examine the one-shot nanosecond laser-pulse PM of bare and silica-coated gold nanoparticles moving in a capillary flow. Four types of gold nanoparticles, including nanostars, nanoantennas, nanorods, and SiO2@Au nanoshells, were fabricated for PM experiments. To evaluate the changes in the particle morphology under laser irradiation, we combine measurements of extinction spectra with electron microscopy. A quantitative spectral approach is developed to characterize the laser power PM threshold in terms of normalized extinction parameters. The experimentally determined PM threshold increases in series were as follows: nanorods, nanoantennas, nanoshells, and nanostars. An important observation is that even a thin silica shell significantly increases the photostability of gold nanorods. The developed methods and reported findings can be useful for the optimal design of plasmonic particles and laser irradiation parameters in various biomedical applications of functionalized hybrid nanostructures.

6.
Molecules ; 27(18)2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36144805

RESUMEN

A promising approach to targeted drug delivery is the remote control of magnetically sensitive objects using an external magnetic field source. This method can assist in the accumulation of magnetic carriers in the affected area for local drug delivery, thus providing magnetic nanoparticles for MRI contrast and magnetic hyperthermia, as well as the magnetic separation of objects of interest from the bloodstream and liquid biopsy samples. The possibility of magnetic objects' capture in the flow is determined by the ratio of the magnetic field strength and the force of viscous resistance. Thus, the capturing ability is limited by the objects' magnetic properties, size, and flow rate. Despite the importance of a thorough investigation of this process to prove the concept of magnetically controlled drug delivery, it has not been sufficiently investigated. Here, we studied the efficiency of polyelectrolyte capsules' capture by the external magnetic field source depending on their size, the magnetic nanoparticle payload, and the suspension's flow rate. Additionally, we estimated the possibility of magnetically trapping cells containing magnetic capsules in flow and evaluated cells' membrane integrity after that. These results are required to prove the possibility of the magnetically controlled delivery of the encapsulated medicine to the affected area with its subsequent retention, as well as the capability to capture magnetically labeled cells in flow.


Asunto(s)
Sistemas de Liberación de Medicamentos , Magnetismo , Cápsulas/química , Campos Magnéticos , Polielectrolitos
7.
ACS Appl Bio Mater ; 5(6): 2976-2989, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35616387

RESUMEN

We present a targeted drug delivery system for therapy and diagnostics that is based on a combination of contrasting, cytotoxic, and cancer-cell-targeting properties of multifunctional carriers. The system uses multilayered polymer microcapsules loaded with magnetite and doxorubicin. Loading of magnetite nanoparticles into the polymer shell by freezing-induced loading (FIL) allowed the loading efficiency to be increased 5-fold, compared with the widely used layer-by-layer (LBL) assembly. FIL also improved the photoacoustic signal and particle mobility in a magnetic field gradient, a result unachievable by the LBL alone. For targeted delivery of the carriers to cancer cells, the carrier surface was modified with a designed ankyrin repeat protein (DARPin) directed toward the epithelial cell adhesion molecule (EpCAM). Flow cytometry measurements showed that the DARPin-coated capsules specifically interacted with the surface of EpCAM-overexpressing human cancer cells such as MCF7. In vivo and ex vivo biodistribution studies in FvB mice showed that the carrier surface modification with DARPin changed the biodistribution of the capsules toward epithelial cells. In particular, the capsules accumulated substantially in the lungs─a result that can be effectively used in targeted lung cancer therapy. The results of this work may aid in the further development of the "magic bullet" concept and may bring the quality of personalized medicine to another level.


Asunto(s)
Portadores de Fármacos , Nanocompuestos , Animales , Cápsulas , Proteínas de Repetición de Anquirina Diseñadas , Sistemas de Liberación de Medicamentos/métodos , Molécula de Adhesión Celular Epitelial , Ratones , Polímeros , Distribución Tisular
8.
Pharmaceutics ; 13(12)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34959428

RESUMEN

Drug carriers based on polyelectrolyte microcapsules remotely controlled with an external magnetic field are a promising drug delivery system. However, the influence of capsule parameters on microcapsules' behavior in vivo is still ambiguous and requires additional study. Here, we discuss how the processes occurring in the blood flow influence the circulation time of magnetic polyelectrolyte microcapsules in mouse blood after injection into the blood circulatory system and their interaction with different blood components, such as WBCs and RBCs. The investigation of microcapsules ranging in diameter 1-5.5 µm allowed us to reveal the dynamics of their filtration by vital organs, cytotoxicity, and hemotoxicity, which is dependent on their size, alongside the efficiency of their interaction with the magnetic field. Our results show that small capsules have a long circulation time and do not affect blood cells. In contrast, the injection of large 5.5 µm microcapsules leads to fast filtration from the blood flow, induces the inhibition of macrophage cell line proliferation after 48 h, and causes an increase in hemolysis, depending on the carrier concentration. The obtained results reveal the possible directions of fine-tuning microcapsule parameters, maximizing capsule payload without the side effects for the blood flow or the blood cells.

9.
Biomed Opt Express ; 12(1): 380-394, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33659080

RESUMEN

Detection and extraction of circulating tumor cells and other rare objects in the bloodstream are of great interest for modern diagnostics, but devices that can solve this problem for the whole blood volume of laboratory animals are still rare. Here we have developed SPIM-based lightsheet flow cytometer for the detection of fluorescently-labeled objects in whole blood. The bypass channel between two blood vessels connected with the external flow cell was used to visualize, detect, and magnetically separate fluorescently-labeled objects without hydrodynamic focusing. Carriers for targeted drug delivery were used as model objects to test the device performance. They were injected into the bloodstream of the rat, detected fluorescently, and then captured from the bloodstream by a magnetic separator prior to filtration in organs. Carriers extracted from the whole blood were studied by a number of in vitro methods.

10.
Sci Rep ; 11(1): 1185, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441866

RESUMEN

In vivo liquid biopsy, especially using the photoacoustic (PA) method, demonstrated high clinical potential for early diagnosis of deadly diseases such as cancer, infections, and cardiovascular disorders through the detection of rare circulating tumor cells (CTCs), bacteria, and clots in the blood background. However, little progress has been made in terms of standardization of these techniques, which is crucial to validate their high sensitivity, accuracy, and reproducibility. In the present study, we addressed this important demand by introducing a dynamic blood vessel phantom with flowing mimic normal and abnormal cells. The light transparent silica microspheres were used as white blood cells and platelets phantoms, while hollow polymeric capsules, filled with hemoglobin and melanin, reproduced red blood cells and melanoma CTCs, respectively. These phantoms were successfully used for calibration of the PA flow cytometry platform with high-speed signal processing. The results suggest that these dynamic cell flow phantoms with appropriate biochemical, optical, thermal, and acoustic properties can be promising for the establishment of standardization tool for calibration of PA, fluorescent, Raman, and other detection methods of in vivo flow cytometry and liquid biopsy.


Asunto(s)
Circulación Sanguínea/fisiología , Biopsia Líquida/métodos , Técnicas Fotoacústicas/métodos , Adulto , Animales , Plaquetas/metabolismo , Plaquetas/patología , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Línea Celular Tumoral , Detección Precoz del Cáncer/métodos , Eritrocitos/patología , Femenino , Citometría de Flujo/métodos , Humanos , Melaninas/metabolismo , Melanoma/patología , Ratones , Ratones Endogámicos BALB C , Imagen Molecular/métodos , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Estándares de Referencia , Reproducibilidad de los Resultados , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...