Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 14(14)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34300723

RESUMEN

Zinc oxide nanoparticles (N-ZnO) and zinc complexes with 1,3-diketones of different structures were applied instead of microsized zinc oxide (M-ZnO) to activate the sulfur vulcanization of styrene-butadiene rubber (SBR). The influence of vulcanization activators on the cure characteristics of rubber compounds, as well as crosslink density and functional properties of SBR vulcanizates, such as tensile properties, hardness, damping behavior, thermal stability and resistance to thermo-oxidative aging was explored. Applying N-ZnO allowed to reduce the content of zinc by 40% compared to M-ZnO without detrimental influence on the cure characteristic and performance of SBR composites. The activity of zinc complexes in vulcanization seems to strongly depend on their structure, i.e., availability of zinc to react with curatives. The lower the steric hindrance of the substituents and thus the better the availability of zinc ions, the greater was the activity of the zinc complex and consequently the higher the crosslink density of the vulcanizates. Zinc complexes had no detrimental effect on the time and temperature of SBR vulcanization. Despite lower crosslink density, most vulcanizates with zinc complexes demonstrated similar or improved functional properties in comparison with SBR containing M-ZnO. Most importantly, zinc complexes allowed the content of zinc in SBR compounds to be reduced by approximately 90% compared to M-ZnO.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA