Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 22(9): e3002832, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39312572

RESUMEN

Many distantly related organisms have convergently evolved traits and lifestyles that enable them to live in similar ecological environments. However, the extent of phenotypic convergence evolving through the same or distinct genetic trajectories remains an open question. Here, we leverage a comprehensive dataset of genomic and phenotypic data from 1,049 yeast species in the subphylum Saccharomycotina (Kingdom Fungi, Phylum Ascomycota) to explore signatures of convergent evolution in cactophilic yeasts, ecological specialists associated with cacti. We inferred that the ecological association of yeasts with cacti arose independently approximately 17 times. Using a machine learning-based approach, we further found that cactophily can be predicted with 76% accuracy from both functional genomic and phenotypic data. The most informative feature for predicting cactophily was thermotolerance, which we found to be likely associated with altered evolutionary rates of genes impacting the cell envelope in several cactophilic lineages. We also identified horizontal gene transfer and duplication events of plant cell wall-degrading enzymes in distantly related cactophilic clades, suggesting that putatively adaptive traits evolved independently through disparate molecular mechanisms. Notably, we found that multiple cactophilic species and their close relatives have been reported as emerging human opportunistic pathogens, suggesting that the cactophilic lifestyle-and perhaps more generally lifestyles favoring thermotolerance-might preadapt yeasts to cause human disease. This work underscores the potential of a multifaceted approach involving high-throughput genomic and phenotypic data to shed light onto ecological adaptation and highlights how convergent evolution to wild environments could facilitate the transition to human pathogenicity.

2.
Yeast ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39295298

RESUMEN

Yeasts in the subphylum Saccharomycotina are found across the globe in disparate ecosystems. A major aim of yeast research is to understand the diversity and evolution of ecological traits, such as carbon metabolic breadth, insect association, and cactophily. This includes studying aspects of ecological traits like genetic architecture or association with other phenotypic traits. Genomic resources in the Saccharomycotina have grown rapidly. Ecological data, however, are still limited for many species, especially those only known from species descriptions where usually only a limited number of strains are studied. Moreover, ecological information is recorded in natural language format limiting high throughput computational analysis. To address these limitations, we developed an ontological framework for the analysis of yeast ecology. A total of 1,088 yeast strains were added to the Ontology of Yeast Environments (OYE) and analyzed in a machine-learning framework to connect genotype to ecology. This framework is flexible and can be extended to additional isolates, species, or environmental sequencing data. Widespread adoption of OYE would greatly aid the study of macroecology in the Saccharomycotina subphylum.

3.
Int J Food Microbiol ; 426: 110899, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39244812

RESUMEN

Yeast optimisation has been crucial in improving the quality and efficiency of beer production, one of the world's most widely consumed beverages. In this context, rare mating hybridisation is a promising technique for yeast optimization to generate novel and improved non-GMO strains. The limitation of this technique is the lack of knowledge and comparable data on yeast strains hybridisable to Saccharomyces cerevisiae, probably the most important yeast species in beer production. Yeast from the genera Saccharomyces, Naumovozyma, Nakaseomyces and Kazachstania have been described to be able to form hybrids with S. cerevisiae. In the present study, 242 yeast strains were analysed under brewing conditions, including Saccharomyces species (S. cerevisiae, S. kudriavzevii, S. uvarum, S. eubayanus, S. paradoxus, S. mikatae, S. jurei and S. arboricola) and non-Saccharomyces species (Naumovozyma, Nakaseomyces and Kazaschtania), representing the full genetic variability (species and subpopulations) described up to the start of the study. The fermentation profile was analysed by monitoring weight loss during fermentation to determine kinetic parameters and CO2 production. Metabolic analysis was performed to determine the concentration of sugars (maltotriose, maltose and glucose), alcohols (ethanol, glycerol and 2,3-butanediol) and organic acids (malic acid, succinic acid and acetic acid). Maltose and maltotriose are the predominant sugars in beer wort. The ability to consume these sugars determines the characteristics of the final product. Dataset comparisons were then made at species, subpopulation and isolation source level. The results obtained in this study demonstrate the great phenotypic variability that exists within the genus Saccharomyces and within each species of this genus, which could be useful in the generation of optimised brewing hybrids. Yeasts with different fermentative capacities and fermentative behaviours can be found under brewing conditions. S. cerevisiae, S. uvarum and S. eubayanus are the species that contain strains with similar fermentation performance to commercial strains.

4.
Mycology ; 15(3): 400-423, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247897

RESUMEN

The arthroconidial yeast-like species currently classified in the asexual genera Geotrichum and Saprochaete and the sexual genera Dipodascus, Galactomyces and Magnusiomyces are frequently associated with dairy and cosmetics production, fruit rot and human infection. However, the taxonomic system of these fungi has not been updated to accommodate the new nomenclature code adopting the "one fungus, one name" principle. Here, we performed phylogenetic analyses of these yeast-like species based on the sequences of the internal transcribed spacer (ITS) region and the D1/D2 domain of the large subunit of the rRNA gene. Two monophyletic groups were recognised from these species. One group contained Dipodascus, Galactomyces, and Geotrichum species and the other Magnusiomyces and Saprochaete species. We thus assigned the species in each group into one genus and selected the genus name Geotrichum for the first group and Magnusiomyces for the second one based on the principle of priority of publication. Five new Geotrichum species were identified from arthroconidial yeast strains recently isolated from various sources in China. The new species are described as Ge. dehoogii sp. nov., Ge. fujianense sp. nov., Ge. maricola sp. nov., Ge. smithiae sp. nov., and Ge. sinensis sp. nov.

5.
bioRxiv ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39091791

RESUMEN

Many remarkable innovations have repeatedly occurred across vast evolutionary distances. When convergent traits emerge on the tree of life, they are sometimes driven by the same underlying gene families, while other times many different gene families are involved. Conversely, a gene family may be repeatedly recruited for a single trait or many different traits. To understand the general rules governing convergence at both genomic and phenotypic levels, we systematically tested associations between 56 binary metabolic traits and gene count in 14,710 gene families from 993 species of Saccharomycotina yeasts. Using a recently developed phylogenetic approach that reduces spurious correlations, we discovered that gene family expansion and contraction was significantly linked to trait gain and loss in 45/56 (80%) of traits. While 601/746 (81%) of significant gene families were associated with only one trait, we also identified several 'keystone' gene families that were significantly associated with up to 13/56 (23%) of all traits. These results indicate that metabolic innovations in yeasts are governed by a narrow set of major genetic elements and mechanisms.

6.
Insects ; 15(8)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39194771

RESUMEN

In this study, we conducted a comprehensive survey aimed at assessing the diversity of yeast species inhabiting the guts of various insect species collected mainly from two Bulgarian National Parks, namely, Rila, and Pirin. The insect specimens encompass a broad taxonomic spectrum, including representatives from Coleoptera, Orthoptera, Lepidoptera, Hymenoptera, Dermaptera, Isopoda, and Collembola. Yeast strains were identified with DNA barcoding using the ribosomal markers, specifically, the D1/D2 domains of the ribosomal large subunit (LSU) and the internal transcribed spacers regions ITS 1 + 2 (ITS). The analysis unveiled the presence of 89 ascomycetous and 18 basidiomycetous yeast isolates associated with the insect specimens. Furthermore, our study identified 18 hitherto unknown yeast species.

7.
G3 (Bethesda) ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39213398

RESUMEN

Codon usage bias, or the unequal use of synonymous codons, is observed across genes, genomes, and between species. It has been implicated in many cellular functions, such as translation dynamics and transcript stability, but can also be shaped by neutral forces. We characterized codon usage across 1,154 strains from 1,051 species from the fungal subphylum Saccharomycotina to gain insight into the biases, molecular mechanisms, evolution, and genomic features contributing to codon usage patterns. We found a general preference for A/T-ending codons and correlations between codon usage bias, GC content, and tRNA-ome size. Codon usage bias is distinct between the 12 orders to such a degree that yeasts can be classified with an accuracy greater than 90% using a machine-learning algorithm. We also characterized the degree to which codon usage bias is impacted by translational selection. We found it was influenced by a combination of features, including the number of coding sequences, BUSCO count, and genome length. Our analysis also revealed an extreme bias in codon usage in the Saccharomycodales associated with a lack of predicted arginine tRNAs that decode CGN codons, leaving only the AGN codons to encode arginine. Analysis of Saccharomycodales gene expression, tRNA sequences, and codon evolution suggests that avoidance of the CGN codons is associated with a decline in arginine tRNA function. Consistent with previous findings, codon usage bias within the Saccharomycotina is shaped by genomic features and GC bias. However, we find cases of extreme codon usage preference and avoidance along yeast lineages, suggesting additional forces may be shaping the evolution of specific codons.

8.
bioRxiv ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38895429

RESUMEN

Gene gains and losses are a major driver of genome evolution; their precise characterization can provide insights into the origin and diversification of major lineages. Here, we examined gene family evolution of 1,154 genomes from nearly all known species in the medically and technologically important yeast subphylum Saccharomycotina. We found that yeast gene family and genome evolution are distinct from plants, animals, and filamentous ascomycetes and are characterized by small genome sizes and smaller gene numbers but larger gene family sizes. Faster-evolving lineages (FELs) in yeasts experienced significantly higher rates of gene losses-commensurate with a narrowing of metabolic niche breadth-but higher speciation rates than their slower-evolving sister lineages (SELs). Gene families most often lost are those involved in mRNA splicing, carbohydrate metabolism, and cell division and are likely associated with intron loss, metabolic breadth, and non-canonical cell cycle processes. Our results highlight the significant role of gene family contractions in the evolution of yeast metabolism, genome function, and speciation, and suggest that gene family evolutionary trajectories have differed markedly across major eukaryotic lineages.

9.
bioRxiv ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38826271

RESUMEN

Codon usage bias, or the unequal use of synonymous codons, is observed across genes, genomes, and between species. The biased use of synonymous codons has been implicated in many cellular functions, such as translation dynamics and transcript stability, but can also be shaped by neutral forces. The Saccharomycotina, the fungal subphylum containing the yeasts Saccharomyces cerevisiae and Candida albicans , has been a model system for studying codon usage. We characterized codon usage across 1,154 strains from 1,051 species to gain insight into the biases, molecular mechanisms, evolution, and genomic features contributing to codon usage patterns across the subphylum. We found evidence of a general preference for A/T-ending codons and correlations between codon usage bias, GC content, and tRNA-ome size. Codon usage bias is also distinct between the 12 orders within the subphylum to such a degree that yeasts can be classified into orders with an accuracy greater than 90% using a machine learning algorithm trained on codon usage. We also characterized the degree to which codon usage bias is impacted by translational selection. Interestingly, the degree of translational selection was influenced by a combination of genome features and assembly metrics that included the number of coding sequences, BUSCO count, and genome length. Our analysis also revealed an extreme bias in codon usage in the Saccharomycodales associated with a lack of predicted arginine tRNAs. The order contains 24 species, and 23 are computationally predicted to lack tRNAs that decode CGN codons, leaving only the AGN codons to encode arginine. Analysis of Saccharomycodales gene expression, tRNA sequences, and codon evolution suggests that extreme avoidance of the CGN codons is associated with a decline in arginine tRNA function. Codon usage bias within the Saccharomycotina is generally consistent with previous investigations in fungi, which show a role for both genomic features and GC bias in shaping codon usage. However, we find cases of extreme codon usage preference and avoidance along yeast lineages, suggesting additional forces may be shaping the evolution of specific codons.

10.
Science ; 384(6694): eadj4503, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38662846

RESUMEN

Organisms exhibit extensive variation in ecological niche breadth, from very narrow (specialists) to very broad (generalists). Two general paradigms have been proposed to explain this variation: (i) trade-offs between performance efficiency and breadth and (ii) the joint influence of extrinsic (environmental) and intrinsic (genomic) factors. We assembled genomic, metabolic, and ecological data from nearly all known species of the ancient fungal subphylum Saccharomycotina (1154 yeast strains from 1051 species), grown in 24 different environmental conditions, to examine niche breadth evolution. We found that large differences in the breadth of carbon utilization traits between yeasts stem from intrinsic differences in genes encoding specific metabolic pathways, but we found limited evidence for trade-offs. These comprehensive data argue that intrinsic factors shape niche breadth variation in microbes.


Asunto(s)
Ascomicetos , Carbono , Interacción Gen-Ambiente , Nitrógeno , Ascomicetos/clasificación , Ascomicetos/genética , Ascomicetos/metabolismo , Carbono/metabolismo , Genoma Fúngico , Redes y Vías Metabólicas/genética , Nitrógeno/metabolismo , Filogenia
11.
Proc Natl Acad Sci U S A ; 121(18): e2315314121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38669185

RESUMEN

How genomic differences contribute to phenotypic differences is a major question in biology. The recently characterized genomes, isolation environments, and qualitative patterns of growth on 122 sources and conditions of 1,154 strains from 1,049 fungal species (nearly all known) in the yeast subphylum Saccharomycotina provide a powerful, yet complex, dataset for addressing this question. We used a random forest algorithm trained on these genomic, metabolic, and environmental data to predict growth on several carbon sources with high accuracy. Known structural genes involved in assimilation of these sources and presence/absence patterns of growth in other sources were important features contributing to prediction accuracy. By further examining growth on galactose, we found that it can be predicted with high accuracy from either genomic (92.2%) or growth data (82.6%) but not from isolation environment data (65.6%). Prediction accuracy was even higher (93.3%) when we combined genomic and growth data. After the GALactose utilization genes, the most important feature for predicting growth on galactose was growth on galactitol, raising the hypothesis that several species in two orders, Serinales and Pichiales (containing the emerging pathogen Candida auris and the genus Ogataea, respectively), have an alternative galactose utilization pathway because they lack the GAL genes. Growth and biochemical assays confirmed that several of these species utilize galactose through an alternative oxidoreductive D-galactose pathway, rather than the canonical GAL pathway. Machine learning approaches are powerful for investigating the evolution of the yeast genotype-phenotype map, and their application will uncover novel biology, even in well-studied traits.


Asunto(s)
Galactosa , Aprendizaje Automático , Galactosa/metabolismo , Genoma Fúngico , Redes y Vías Metabólicas/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética
13.
J Fungi (Basel) ; 10(3)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38535189

RESUMEN

Annual surveys of Irish soil samples identified three isolates, CBS 16921 (UCD88), CBS 18246 (UCD443), and CBS 18247 (UCD483), of an apiculate yeast species within the Hanseniaspora genus. The internal transcribed spacer (ITS) and D1/D2 region of the large subunit (LSU) rRNA sequences showed that these are isolates of the recently described species Hanseniaspora menglaensis, first isolated from Southwest China. No genome sequence for H. menglaensis is currently available. The genome sequences of the three Irish isolates were determined using short-read (Illumina) sequencing, and the sequence of one isolate (CBS 16921) was assembled to chromosome level using long-read sequencing (Oxford Nanopore Technologies). Phylogenomic analysis shows that H. menglaensis belongs to the fast-evolving lineage (FEL) of Hanseniaspora. Only one MAT idiomorph (encoding MATα1) was identified in all three sequenced H. menglaensis isolates, consistent with one mating type of a heterothallic species. Genome comparisons showed that there has been a rearrangement near MATα of FEL species compared to isolates from the slowly evolving lineage (SEL).

14.
Proc Natl Acad Sci U S A ; 121(10): e2316031121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38412132

RESUMEN

The Saccharomycotina yeasts ("yeasts" hereafter) are a fungal clade of scientific, economic, and medical significance. Yeasts are highly ecologically diverse, found across a broad range of environments in every biome and continent on earth; however, little is known about what rules govern the macroecology of yeast species and their range limits in the wild. Here, we trained machine learning models on 12,816 terrestrial occurrence records and 96 environmental variables to infer global distribution maps at ~1 km2 resolution for 186 yeast species (~15% of described species from 75% of orders) and to test environmental drivers of yeast biogeography and macroecology. We found that predicted yeast diversity hotspots occur in mixed montane forests in temperate climates. Diversity in vegetation type and topography were some of the greatest predictors of yeast species richness, suggesting that microhabitats and environmental clines are key to yeast diversity. We further found that range limits in yeasts are significantly influenced by carbon niche breadth and range overlap with other yeast species, with carbon specialists and species in high-diversity environments exhibiting reduced geographic ranges. Finally, yeasts contravene many long-standing macroecological principles, including the latitudinal diversity gradient, temperature-dependent species richness, and a positive relationship between latitude and range size (Rapoport's rule). These results unveil how the environment governs the global diversity and distribution of species in the yeast subphylum. These high-resolution models of yeast species distributions will facilitate the prediction of economically relevant and emerging pathogenic species under current and future climate scenarios.


Asunto(s)
Biodiversidad , Ecosistema , Clima , Bosques , Carbono , Levaduras
15.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38415839

RESUMEN

Siderophores are crucial for iron-scavenging in microorganisms. While many yeasts can uptake siderophores produced by other organisms, they are typically unable to synthesize siderophores themselves. In contrast, Wickerhamiella/Starmerella (W/S) clade yeasts gained the capacity to make the siderophore enterobactin following the remarkable horizontal acquisition of a bacterial operon enabling enterobactin synthesis. Yet, how these yeasts absorb the iron bound by enterobactin remains unresolved. Here, we demonstrate that Enb1 is the key enterobactin importer in the W/S-clade species Starmerella bombicola. Through phylogenomic analyses, we show that ENB1 is present in all W/S clade yeast species that retained the enterobactin biosynthetic genes. Conversely, it is absent in species that lost the ent genes, except for Starmerella stellata, making this species the only cheater in the W/S clade that can utilize enterobactin without producing it. Through phylogenetic analyses, we infer that ENB1 is a fungal gene that likely existed in the W/S clade prior to the acquisition of the ent genes and subsequently experienced multiple gene losses and duplications. Through phylogenetic topology tests, we show that ENB1 likely underwent horizontal gene transfer from an ancient W/S clade yeast to the order Saccharomycetales, which includes the model yeast Saccharomyces cerevisiae, followed by extensive secondary losses. Taken together, these results suggest that the fungal ENB1 and bacterial ent genes were cooperatively integrated into a functional unit within the W/S clade that enabled adaptation to iron-limited environments. This integrated fungal-bacterial circuit and its dynamic evolution determine the extant distribution of yeast enterobactin producers and cheaters.


Asunto(s)
Enterobactina , Evolución Molecular , Operón , Filogenia , Enterobactina/metabolismo , Enterobactina/genética , Sideróforos/metabolismo , Sideróforos/genética , Genes Fúngicos , Saccharomycetales/genética , Saccharomycetales/metabolismo , Transferencia de Gen Horizontal
16.
Antonie Van Leeuwenhoek ; 117(1): 22, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38217778

RESUMEN

A new species of the yeast genus Blastobotrys was discovered on ancient ship timbers in the Netherlands. The species had developed on the wood of a river barge dating to the Roman period. The growth occurred after the preservative polyethylene glycol (PEG 4000) was washed out of some of the timbers due to an undetected leak in the storage unit. Mycological analysis of various timber samples revealed the presence of Microascus melanosporus (predominant), Microascus paisii, a member of the Acremonium chrysogenum-clade, and a new Blastrobotrys species. The new species produced sporothrix-like conidiophores with clavate blastoconidia (3-7 × 1-3.5 µm) and was found to be osmotolerant, capable of growth on low water activity media like malt yeast 50% glucose agar (MY50G). In this article we formally describe and introduce Blastrobotrys nigripullensis (CBS 17879 T) based on its morphology, physiology and phylogenetic placement.


Asunto(s)
Saccharomycetales , Filogenia , Países Bajos , Levaduras , ADN de Hongos , Análisis de Secuencia de ADN , Técnicas de Tipificación Micológica , Madera/microbiología
17.
FEMS Yeast Res ; 242024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38142225

RESUMEN

The ∼1 200 known species in subphylum Saccharomycotina are a highly diverse clade of unicellular fungi. During its lifecycle, a typical yeast exhibits multiple cell types with various morphologies; these morphologies vary across Saccharomycotina species. Here, we synthesize the evolutionary dimensions of variation in cellular morphology of yeasts across the subphylum, focusing on variation in cell shape, cell size, type of budding, and filament production. Examination of 332 representative species across the subphylum revealed that the most common budding cell shapes are ovoid, spherical, and ellipsoidal, and that their average length and width is 5.6 µm and 3.6 µm, respectively. 58.4% of yeast species examined can produce filamentous cells, and 87.3% of species reproduce asexually by multilateral budding, which does not require utilization of cell polarity for mitosis. Interestingly, ∼1.8% of species examined have not been observed to produce budding cells, but rather only produce filaments of septate hyphae and/or pseudohyphae. 76.9% of yeast species examined have sexual cycle descriptions, with most producing one to four ascospores that are most commonly hat-shaped (37.4%). Systematic description of yeast cellular morphological diversity and reconstruction of its evolution promises to enrich our understanding of the evolutionary cell biology of this major fungal lineage.


Asunto(s)
Ascomicetos , Filogenia , Levaduras
18.
Yeast ; 41(1-2): 52-63, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38146767

RESUMEN

In this study, we describe Nakazawaea atacamensis f. a., sp. nov., a novel species obtained from Neltuma chilensis plant samples in Chile's hyperarid Atacama Desert. In total, three strains of N. atacamensis were obtained from independent N. chilensis samples (synonym Prosopis chilensis, Algarrobo). Two strains were obtained from bark samples, while the third strain was obtained from bark-exuded gum from another tree. The novel species was defined using molecular characteristics and subsequently characterized with respect to morphological, physiological, and biochemical properties. A neighbor-joining analysis using the sequences of the D1/D2 domains of the large subunit ribosomal RNA gene revealed that N. atacamensis clustered with Nakazawaea pomicola. The sequence of N. atacamensis differed from closely related species by 1.3%-5.2% in the D1/D2 domains. A phylogenomic analysis based on single-nucleotide polymorphism's data confirms that the novel species belongs to the genus Nakazawaea, where N. atacamensis clustered with N. peltata. Phenotypic comparisons demonstrated that N. atacamensis exhibited distinct carbon assimilation patterns compared to its related species. Genome sequencing of the strain ATA-11A-BT revealed a genome size of approximately 12.4 Mbp, similar to other Nakazawaea species, with 5116 protein-coding genes annotated using InterProScan. In addition, N. atacamensis exhibited the capacity to ferment synthetic wine must, representing a potential new yeast for mono or co-culture wine fermentations. This comprehensive study expands our understanding of the genus Nakazawaea and highlights the ecological and industrial potential of N. atacamensis in fermentation processes. The holotype of N. atacamensis sp. nov. is CBS 18375T . The Mycobank number is MB 849680.


Asunto(s)
Saccharomycetales , Vino , Fermentación , Filogenia , Saccharomycetales/genética , Pichia/genética , Secuencia de Bases , Análisis de Secuencia de ADN , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética
19.
bioRxiv ; 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38045280

RESUMEN

Siderophores are crucial for iron-scavenging in microorganisms. While many yeasts can uptake siderophores produced by other organisms, they are typically unable to synthesize siderophores themselves. In contrast, Wickerhamiella/Starmerella (W/S) clade yeasts gained the capacity to make the siderophore enterobactin following the remarkable horizontal acquisition of a bacterial operon enabling enterobactin synthesis. Yet, how these yeasts absorb the iron bound by enterobactin remains unresolved. Here, we demonstrate that Enb1 is the key enterobactin importer in the W/S-clade species Starmerella bombicola. Through phylogenomic analyses, we show that ENB1 is present in all W/S clade yeast species that retained the enterobactin biosynthetic genes. Conversely, it is absent in species that lost the ent genes, except for Starmerella stellata, making this species the only cheater in the W/S clade that can utilize enterobactin without producing it. Through phylogenetic analyses, we infer that ENB1 is a fungal gene that likely existed in the W/S clade prior to the acquisition of the ent genes and subsequently experienced multiple gene losses and duplications. Through phylogenetic topology tests, we show that ENB1 likely underwent horizontal gene transfer from an ancient W/S clade yeast to the order Saccharomycetales, which includes the model yeast Saccharomyces cerevisiae, followed by extensive secondary losses. Taken together, these results suggest that the fungal ENB1 and bacterial ent genes were cooperatively integrated into a functional unit within the W/S clade that enabled adaptation to iron-limited environments. This integrated fungal-bacterial circuit and its dynamic evolution determines the extant distribution of yeast enterobactin producers and cheaters.

20.
Yeast ; 40(12): 608-615, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37921542

RESUMEN

A novel budding yeast species was isolated from a soil sample collected in the United States of America. Phylogenetic analyses of multiple loci and phylogenomic analyses conclusively placed the species within the genus Pichia. Strain yHMH446 falls within a clade that includes Pichia norvegensis, Pichia pseudocactophila, Candida inconspicua, and Pichia cactophila. Whole genome sequence data were analyzed for the presence of genes known to be important for carbon and nitrogen metabolism, and the phenotypic data from the novel species were compared to all Pichia species with publicly available genomes. Across the genus, including the novel species candidate, we found that the inability to use many carbon and nitrogen sources correlated with the absence of metabolic genes. Based on these results, Pichia galeolata sp. nov. is proposed to accommodate yHMH446T (=NRRL Y-64187 = CBS 16864). This study shows how integrated taxogenomic analysis can add mechanistic insight to species descriptions.


Asunto(s)
Pichia , Suelo , Pichia/genética , Filogenia , ADN de Hongos/genética , Técnicas de Tipificación Micológica , Levaduras/genética , Carbono , Nitrógeno , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA