Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 91
1.
Andrology ; 7(6): 827-839, 2019 11.
Article En | MEDLINE | ID: mdl-31250567

BACKGROUND: Ageing in men is believed to be associated with fertility decline and elevated risk of congenital disorders for the offspring. The previous studies also reported reduced germ and Sertoli cell numbers in older men. However, it is not clear whether ageing in men with normal spermatogenesis affects the testis and germ cell population dynamics in a way sufficient for transmitting adverse age effects to the offspring. OBJECTIVES: We examined men with normal spermatogenesis at different ages concerning effects on persisting testicular cell types, that is the germ line and Sertoli cells, as these cell populations are prone to be exposed to age effects. MATERIAL AND METHODS: Ageing was assessed in testicular biopsies of 32 patients assigned to three age groups: (i) 28.8 ± 2.7 years; (ii) 48.1 ± 1 years; and (iii) 70.9 ± 6.2 years, n = 8 each, with normal spermatogenesis according to the Bergmann-Kliesch score, and in a group of meiotic arrest patients (29.9 ± 3.8 years, n = 8) to decipher potential links between different germ cell types. Besides morphometry of seminiferous tubules and Sertoli cell nuclei, we investigated spermatogenic output/efficiency, and dynamics of spermatogonial populations via immunohistochemistry for MAGE A4, PCNA, CREM and quantified A-pale/A-dark spermatogonia. RESULTS: We found a constant spermatogenic output (CREM-positive round spermatids) in all age groups studied. In men beyond their mid-40s (group 2), we detected increased nuclear and nucleolar size in Sertoli cells, indirectly indicating an elevated protein turnover. From the 7th decade (group 3) of life onwards, testes showed increased proliferation of undifferentiated spermatogonia, decreased spermatogenic efficiency and elevated numbers of proliferating A-dark spermatogonia. DISCUSSION AND CONCLUSION: Maintaining normal sperm output seems to be an intrinsic determinant of spermatogenesis. Ageing appears to affect this output and might provoke compensatory proliferation increase in A spermatogonia which, in turn, might hamper germ cell integrity.


Seminiferous Tubules/physiology , Sertoli Cells/physiology , Spermatogenesis/physiology , Spermatogonia/physiology , Spermatozoa/physiology , Adult , Aged , Aging/physiology , Congenital Abnormalities/epidemiology , Genetic Diseases, Inborn/epidemiology , Humans , Male , Middle Aged
2.
Andrology ; 6(1): 176-183, 2018 01.
Article En | MEDLINE | ID: mdl-29179257

Testicular germ cell cancer (TGCC) is derived from germ cell neoplasia in situ (GCNIS), which arises due to niche disturbances affecting the Sertoli cells. It is believed that exogenous endocrine factors have a crucial role in governing neoplastic transformation but on a strong hereditary background. Follicle-stimulating hormone (FSH) is the major regulatory hormone of the Sertoli cells. FSH signalling-related single-nucleotide polymorphisms (SNPs) have previously been shown to affect FSH action in men at different levels. We aimed to investigate whether three FSH-related SNPs (FSHR 2039A>G, FSHR -29G>A and FSHB -211G>T) are associated with development of TGCC. A total of 752 Danish and German patients with TGCC from two tertiary andrological referral centres were included. Three control groups comprising 2020 men from the general population, 679 fertile men and 417 infertile men, were also included. Chi-squared test was performed to compare genotype- and allele frequencies. Kruskal-Wallis test was performed to compare age at diagnosis. Patients with TGCC had a higher frequency of the A-allele of FSHR 2039A>G compared to the group of fertile men with an AA-genotype frequency of 30.2% vs. 22.0%, respectively, p = 0.002. This variant is associated with higher FSH receptor activity. The distribution of the FSHR 2039A>G did not differ significantly between the patients with TGCC and the infertile or the general population. The frequency of the two other SNPs did not differ between patient with TGCC and any of the control groups. No differences were detected between genotypes and age distribution or histological subtype of the tumours. In conclusion, we observed that a genetic variant associated with FSHR activity may modulate the susceptibility to TGCC.


Genetic Predisposition to Disease/genetics , Neoplasms, Germ Cell and Embryonal/genetics , Polymorphism, Single Nucleotide/genetics , Receptors, FSH/genetics , Testicular Neoplasms/genetics , Adolescent , Adult , Genotype , Humans , Male , Middle Aged , Retrospective Studies , Young Adult
4.
Andrology ; 4(2): 213-7, 2016 Mar.
Article En | MEDLINE | ID: mdl-26891892

The 'selfish spermatogonial selection'- model was proposed to explain the paternal age effect (PAE) of some congenital disorders associated with point mutations in male germ cells. According to this, spermatogonia carrying pathogenic mutations gain a selection advantage over non-mutated spermatogonia which leads to an increased number of mutated spermatogonia and consequently spermatozoa over time. Recently, an immunohistochemical approach using the premeiotic marker melanoma antigen family A4 (MAGE A4) was undertaken by the Wilkie group to confirm the presence of microclones of putatively mutated spermatogonia in testes of elderly men. The objective of our study was the age-dependent assessment of testes from men with normal spermatogenesis using MAGE A4 immunohistochemistry to identify and corroborate cellular clusters indicative for 'selfish spermatogonial selection' in our cohort. We analyzed testicular tissues obtained from men with normal spermatogenesis assigned to three age groups [(1) 28.8 ± 2.7 years; (2) 48.1 ± 1 years; (3) 71.9 ± 6.8 years, n/group = 8]. We could detect very similar distribution patterns of MAGE A4-positive cells and the presence of several types of microclusters as reported previously. However, these cellular clusters, indicative for clonal expansion, were not only present in testes from elderly men but also in those from age group 1 and 2. Using graphical three-dimensional modelling, we identified that cross-section directions e.g. longitudinal sections might provoke misleading interpretation of spermatogonial clusters, in particular when the tissue processing is limited. Thus, appropriate fixation and embedding is needed for reliable analysis of testicular sections. We therefore propose a more careful interpretation of such spermatogonial clusters and recommend a 3-D analysis to unequivocally determine 'selfish spermatogonial selection'-manifestations.


Aging/pathology , Imaging, Three-Dimensional , Mutation , Spermatogenesis/genetics , Spermatogonia/pathology , Testis/pathology , Adult , Aged , Aging/genetics , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Biopsy , Clone Cells , Cohort Studies , Humans , Male , Middle Aged , Models, Biological , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism
5.
Urologe A ; 55(1): 58-62, 2016 Jan.
Article De | MEDLINE | ID: mdl-26556267

BACKGROUND: In Germany there is an emerging trend for postponing parenthood due to non-medical, sociocultural reasons. This clearly impacts on the reproductive success due to an age-dependent decrease in fertility. Thus, strategies and techniques are currently discussed which could preserve the female fertility status, among which social freezing (cryopreservation of oocytes) for later fertilization is the most realistic one; however, while there is an intensive discussion on the procedure and timing of oocyte cryopreservation, virtually no attention has been paid to the male side and the aging effects on the male germ cells. AIM: To evaluate the risk paternal age poses for the integrity of germ cells. METHODS: For this review a literature search using PubMed, data from the Federal Statistical Office of Germany, the German in vitro fertilization (IVF) register as well as own data were used. RESULTS: Sperm cell integrity is clearly affected by age both at the genetic as well as at the epigenetic levels. The estimated mutation rate for spermatozoa doubles every 16.5 years. Monogenic and multifactorial diseases are strongly associated with paternal age. Men aged >40 years have an increased risk of passing age-related mutations to their children. CONCLUSIONS: Cryopreservation of spermatozoa is an option for men who postpone planning a family. Genetic counseling is recommended for couples undertaking social freezing and a male age of >40 years.


Cryopreservation/statistics & numerical data , Fertilization in Vitro/statistics & numerical data , Genetic Diseases, Inborn/epidemiology , Genetic Diseases, Inborn/genetics , Paternal Age , Semen Preservation/statistics & numerical data , Adult , Age Distribution , Genetic Predisposition to Disease/epidemiology , Genetic Predisposition to Disease/genetics , Germany/epidemiology , Humans , Incidence , Male , Middle Aged , Mutation/genetics , Reproductive Behavior , Risk Factors , Sperm Banks
6.
Andrology ; 3(6): 1050-3, 2015 Nov.
Article En | MEDLINE | ID: mdl-26445243

Male infertility contributes to a substantial share to couple infertility. Despite scientific efforts, most cases of male infertility remain 'idiopathic' and male-specific therapeutic options are sparse. Given the crucial role of the follicle-stimulating hormone (FSH) for spermatogenesis, FSH is used empirically to improve semen parameters. Furthermore, a recently updated Cochrane review points to a beneficial effect of FSH treatment in idiopathic infertile men on spontaneous pregnancy rates. However, since response to FSH varies strongly even in selected patients and given the lack of powerful evidence of FSH treatment regimens, intra-cytoplasmic spermatozoa injection (ICSI) is widely used in idiopathic male infertility, though the treatment burden is high for the couple and it entails considerable costs and some risks. Single nucleotide polymorphisms (SNPs) within FSH ligand/receptor genes (FSHB/FSHR), significantly influencing reproductive parameters in men, represent promising candidates to serve as pharmacogenetic markers to improve prediction of response to FSH. However, there is an evident lack of information which patients should be treated and how many patients in an andrological outpatient clinic would be eligible for such a treatment, a crucial decision criterion for clinicians and also pharmaceutical industry to start such a pharmacogenetic intervention therapy. After screening our andrological patient cohort, we present a realistic scenario and a basis for further prospective studies using FSH in idiopathic infertile men.


Fertility Agents/therapeutic use , Fertility/drug effects , Follicle Stimulating Hormone, beta Subunit/agonists , Follicle Stimulating Hormone, beta Subunit/genetics , Follicle Stimulating Hormone/therapeutic use , Infertility, Male/drug therapy , Pharmacogenetics/methods , Polymorphism, Single Nucleotide , Reproductive Techniques, Assisted , Female , Genotype , Humans , Infertility, Male/genetics , Infertility, Male/physiopathology , Male , Phenotype , Pregnancy , Treatment Outcome
7.
Mol Cell Endocrinol ; 390(1-2): 65-72, 2014 Jun 05.
Article En | MEDLINE | ID: mdl-24747085

The luteinizing hormone/chorionic gonadotropin receptor (LHCGR) is essential for normal male and female reproductive processes. The spatial and temporal LHCGR gene expression is controlled by a complex system of regulatory mechanisms which are crucial for normal physiological function, especially during the female cycle. In this study, we aimed to elucidate whether microRNAs are involved in this network and play a role in regulating LHCGR expression. Computational analysis predicted that miR-513a-3p interacts with the LHCGR mRNA via three binding sites located in the 3'UTR region, enabling a synergistic action. Moreover, using a luciferase-based reporter assay we found that miR-513a-3p targets the LHCGR, resulting in a significant down-regulation of its expression. In human primary granulosa cell cultures we detected a dynamic, inversely associated expression pattern of miR-513a-3p and the LHCGR. In addition, transfection with miR-513a-3p or its specific inhibitor led to a down- or up-regulation at the LHCGR mRNA level, respectively. An increased amount of miR-513a-3p resulted in the down-regulation of the LHCGR mRNA, reflected by the attenuation of cAMP synthesis after hormonal stimulation. In conclusion, these data demonstrate that miR-513a-3p is involved in the control of the LHCGR expression by an inversely regulated mechanism at the post-transcriptional level and show for the first time that this kind of post-transcriptional process contributes to the multifaceted system of the human LHCGR regulation.


Granulosa Cells/metabolism , MicroRNAs/physiology , Receptors, LH/genetics , 3' Untranslated Regions , Adult , Base Sequence , Binding Sites , Cells, Cultured , Female , Gene Expression , Humans , Polymorphism, Single Nucleotide , RNA Interference , Receptors, LH/metabolism , Reproductive Techniques, Assisted
8.
Andrology ; 2(2): 275-81, 2014 Mar.
Article En | MEDLINE | ID: mdl-24574169

Klinefelter syndrome (KS, 47,XXY) is associated with low serum testosterone (T), long thought to arise from disturbed steroidogenesis in Leydig cells. However, intratesticular testosterone (ITT) concentrations were recently found to be normal in a KS mouse model(41,XXY*). So far, nothing was known about ITT concentrations in human patients with KS. Therefore, ITT, sex hormone-binding globulin (SHBG) and histological parameters were measured in human testicular biopsies of 11 KS patients, 30 azoospermic patients with Sertoli-cell-only syndrome and nine men with normal spermatogenesis as controls. ITT concentrations showed an overall pronounced excess over intratesticular SHBG in molar terms and were significantly increased in men with KS despite of reduced serum T levels. While the ratio of ITT/serum T was markedly increased in KS, the ITT/LH-ratio was comparable between all groups. After finding significantly increased ITT levels in men with KS, a finding even more striking than in the 41,XXY* KS mouse model, we set out to find a possible 'vascular' explanation for the lack of T release into the testicular blood stream. In testis biopsies from patients,reliable analysis of the vessels is, however, not possible because of the bias resulting from the dissection technique requiring avoidance of larger blood vessels to prevent bleeding. Consequently, the blood vessel constitution was evaluated in whole testis sections from adult male 41,XXY* and 40,XY*mice (n=5, each). Indeed, the blood vessel/testes surface ratio correcting for the smaller testes of XXY*mice was significantly lower in these mice compared with XY*controls. In conclusion, testicular T production does not seem to be impaired in men with KS. On the contrary, ITT concentrations are increased, but not because of increased SHBG activity. The data from the mouse model let us speculate that a reduced vascular bed might be involved in lower release of T into the blood stream.


Klinefelter Syndrome/metabolism , Sex Hormone-Binding Globulin/metabolism , Testis/blood supply , Testis/metabolism , Testosterone/metabolism , Adult , Animals , Azoospermia , Humans , Male , Mice , Sertoli Cell-Only Syndrome , Spermatogenesis , Testosterone/blood
9.
Andrology ; 1(6): 822-9, 2013 Nov.
Article En | MEDLINE | ID: mdl-23996961

Aberrant sperm DNA methylation patterns, mainly in imprinted genes, have been associated with male subfertility and oligospermia. Here, we performed a genome-wide methylation analysis in sperm samples representing a wide range of semen parameters. Sperm DNA samples of 38 males attending a fertility centre were analysed with Illumina HumanMethylation27 BeadChips, which quantify methylation of >27 000 CpG sites in cis-regulatory regions of almost 15 000 genes. In an unsupervised analysis of methylation of all analysed sites, the patient samples clustered into a major and a minor group. The major group clustered with samples from normozoospermic healthy volunteers and, thus, may more closely resemble the normal situation. When correlating the clusters with semen and clinical parameters, the sperm counts were significantly different between groups with the minor group exhibiting sperm counts in the low normal range. A linear model identified almost 3000 CpGs with significant methylation differences between groups. Functional analysis revealed a broad gain of methylation in spermatogenesis-related genes and a loss of methylation in inflammation- and immune response-related genes. Quantitative bisulfite pyrosequencing validated differential methylation in three of five significant candidate genes on the array. Collectively, we identified a subgroup of sperm samples for assisted reproduction with sperm counts in the low normal range and broad methylation changes (affecting approximately 10% of analysed CpG sites) in specific pathways, most importantly spermatogenesis-related genes. We propose that epigenetic analysis can supplement traditional semen parameters and has the potential to provide new insights into the aetiology of male subfertility.


DNA Methylation , Fertility/genetics , Genes, MHC Class II , Infertility, Male/genetics , Inflammation/genetics , Spermatogenesis/genetics , CpG Islands/physiology , Fertility/immunology , Gene Ontology , Humans , Male , Reproduction/genetics , Sperm Count
10.
Hum Reprod ; 28(11): 3012-25, 2013 Nov.
Article En | MEDLINE | ID: mdl-24001715

STUDY QUESTION: Does a combined approach allow for the unequivocal detection of human germ cells and particularly of spermatogonia in vitro? SUMMARY ANSWER: Based on our findings, we conclude that an approach comprising: (i) the detailed characterization of patients and tissue samples prior to the selection of biopsies, (ii) the use of unambiguous markers for the characterization of cultures and (iii) the use of biopsies lacking the germ cell population as a negative control is the prerequisite for the establishment of human germ cell cultures. WHAT IS KNOWN ALREADY: The use of non-specific marker genes and the failure to assess the presence of testicular somatic cell types in germ cell cultures may have led to a misinterpretation of results and the erroneous description of germ cells in previous studies. STUDY DESIGN, SIZE, DURATION: Testicular biopsies were selected from a pool of 264 consecutively obtained biopsies. Based on the histological diagnosis, biopsies with distinct histological phenotypes were selected (n = 35) to analyze the expression of germ cell and somatic cell markers. For germ cell culture experiments, gonadotrophin levels and clinical data were used as selection criteria resulting in the following two groups: (i) biopsies with qualitatively intact spermatogenesis (n = 4) and (ii) biopsies from Klinefelter syndrome Klinefelter patients lacking the germ cell population (n = 3). PARTICIPANTS/MATERIALS, SETTING, METHODS: Quantitative real-time PCR analyses were performed to evaluate the specificity of 18 selected germ cell and 3 somatic marker genes. Cell specificity of individual markers was subsequently validated using immunohistochemistry. Finally, testicular cell cultures were established and were analyzed after 10 days for the expression of germ cell- (UTF1, FGFR3, MAGE A4, DDX4) and somatic cell-specific markers (SMA, VIM, LHCGR) at the RNA and the protein levels. MAIN RESULTS AND THE ROLE OF CHANCE: Interestingly, only 9 out of 18 marker genes reflected the presence of germ cells and cell specificity could be validated using immunohistochemistry. Furthermore, VIM, SMA and LHCGR were found to reflect the presence of testicular somatic cells at the RNA and the protein levels. Using this validated marker panel and biopsies lacking the germ cell population (n = 3) as a negative control, we demonstrated that germ cell cultures containing spermatogonia can be established from biopsies with normal spermatogenesis (n = 4) and that these cultures can be maintained for the period of 10 days. However, marker profiling has to be performed at regular time points as the composition of testicular cell types may continuously change under longer term culture conditions. LIMITATIONS, REASONS FOR CAUTION: There are significant differences regarding the spermatogonial stem cell (SSC) system and spermatogenesis between rodents and primates. It is therefore possible that marker genes that do not reflect the presence of spermatogonia in the human are specific for spermatogonia in other animal models. WIDER IMPLICATIONS OF THE FINDINGS: While some studies have reported that human SSCs can be maintained in vitro and show characteristics of pluripotency, the germ cell origin and the differentiation potential of these cells were subsequently called into question. This study provides critical insights into possible sources for the misinterpretation of results regarding the presence of germ cells in human testicular cell cultures and our findings can therefore help to avoid conflicting reports in the future. STUDY FUNDING/COMPETING INTEREST(S): This project was supported by the Stem Cell Network North Rhine-Westphalia and the Innovative Medical Research of the University of Münster Medical School (Grant KO111014). In addition, it was funded by the DFG-Research Unit FOR 1041 Germ Cell Potential (GR 1547/11-1 and SCHL 394/11-2), the BMBF (01GN0809/10) and the IZKF (CRA 03/09). The authors declare that there is no conflict of interest. TRIAL REGISTRATION NUMBER: Not applicable.


Cell Culture Techniques , Spermatogonia/cytology , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Biopsy , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Gene Expression Profiling , Genetic Markers , Humans , Immunohistochemistry , Male , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Real-Time Polymerase Chain Reaction , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Spermatogonia/metabolism , Testis/cytology , Testis/pathology , Trans-Activators/genetics , Trans-Activators/metabolism
11.
Andrology ; 1(5): 731-40, 2013 Sep.
Article En | MEDLINE | ID: mdl-23970452

Recent studies have shown associations of aberrant DNA methylation in spermatozoa with idiopathic infertility. The analysis of DNA methylation of specific genes could therefore serve as a valuable diagnostic marker in clinical andrology. For this purpose, rapid and reliable detection methods, reference values and the temporal stability of spermatozoal DNA methylation need to be established and demonstrated. In this prospective study, swim-up purified semen samples from 212 consecutive patients (single samples), 31 normozoospermic volunteers (single samples) and 10 normozoospermic volunteers (four samples at days 1, 3, 42 and 45 plus a fifth sample after 180-951 days) were collected. Spermatozoal DNA was isolated, bisulphite converted and DNA methylation was analysed by pyrosequencing. DNA methylation of the maternally imprinted gene MEST was measured in samples of 212 patients and 31 normozoospermic volunteers and the temporal stability of eight different genes and two repetitive elements was examined in consecutive samples of 10 normozoospermic volunteers. MEST DNA methylation was significantly associated with oligozoospermia, decreased bi-testicular volume and increased FSH levels. A reference range for spermatozoal MEST DNA methylation (0-15%) was established using the 95th percentile of DNA methylation in normozoospermic volunteers. Using this reference range, around 23% of our patient cohort displayed an aberrant MEST DNA methylation. This epigenetic aberration was found to be significantly associated with bi-testicular volume, sperm concentration and total sperm count. DNA methylation in normozoospermic volunteers was stable over a time period of up to 951 days in contrast to classical semen parameters. Our data show that MEST DNA methylation fulfils the prerequisites to be used as routine parameter and support its use during andrological workup if a prognostic value can be shown in future.


DNA Methylation/genetics , Oligospermia/genetics , Spermatozoa/cytology , Biomarkers , Follicle Stimulating Hormone/metabolism , Humans , Male , Oligospermia/diagnosis , Prospective Studies , Semen Analysis , Sperm Count , Spermatozoa/metabolism
12.
Hum Reprod ; 28(6): 1635-46, 2013 Jun.
Article En | MEDLINE | ID: mdl-23482336

STUDY QUESTION: What human tissues and cell types express the X-linked reproductive homeobox (RHOX) gene cluster? SUMMARY ANSWER: The RHOX homeobox genes and proteins are selectively expressed in germ cells in both the ovary and testis. WHAT IS KNOWN ALREADY: The RHOX homeobox transcription factors are encoded by an X-linked gene cluster whose members are selectively expressed in the male and female reproductive tract of mice and rats. The Rhox genes have undergone strong selection pressure to rapidly evolve, making it uncertain whether they maintain their reproductive tissue-centric expression pattern in humans, an issue we address in this report. STUDY DESIGN, SIZE, DURATION: We examined the expression of all members of the human RHOX gene cluster in 11 fetal and 8 adult tissues. The focus of our analysis was on fetal testes, where we evaluated 16 different samples from 8 to 20 weeks gestation. We also analyzed fixed sections from fetal testes, adult testes and adult ovaries to determine the cell type-specific expression pattern of the proteins encoded by RHOX genes. PARTICIPANTS/MATERIALS, SETTING, METHODS: We used quantitative reverse transcription-polymerase chain reaction analysis to assay human RHOX gene expression. We generated antisera against RHOX proteins and used them for western blotting, immunohistochemical and immunofluorescence analyses of RHOXF1 and RHOXF2/2B protein expression. MAIN RESULTS AND THE ROLE OF CHANCE: We found that the RHOXF1 and RHOXF2/2B genes are highly expressed in the testis and exhibit low or undetectable expression in most other organs. Using RHOXF1- and RHOXF2/2B-specific antiserum, we found that both RHOXF1 and RHOXF2/2B are primarily expressed in germ cells in the adult testis. Early stage germ cells (spermatogonia and early spermatocytes) express RHOXF2/2B, while later stage germ cells (pachytene spermatocytes and round spermatids) express RHOXF1. Both RHOXF1 and RHOXF2/2B are expressed in prespermatogonia in human fetal testes. Consistent with this, RHOXF1 and RHOXF2/2B mRNA expression increases in the second trimester during fetal testes development when gonocytes differentiate into prespermatogonia. In the human adult ovary, we found that RHOXF1 and RHOXF2/2B are primarily expressed in oocytes. LIMITATIONS, REASONS FOR CAUTION: While the average level of expression of RHOX genes was low or undetectable in all 19 human tissues other than testes, it is still possible that RHOX genes are highly expressed in a small subset of cells in some of these non-testicular tissues. As a case in point, we found that RHOX proteins are highly expressed in oocytes within the human ovary, despite low levels of RHOX mRNA in the whole ovary. WIDER IMPLICATIONS OF THE FINDINGS: The cell type-specific and developmentally regulated expression pattern of the RHOX transcription factors suggests that they perform regulatory functions during human fetal germ cell development, spermatogenesis and oogenesis. Our results also raise the possibility that modulation of RHOX gene levels could correct some cases of human infertility and that their encoded proteins are candidate targets for contraceptive drug design.


Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Oocytes/metabolism , Spermatozoa/metabolism , Adult , Amino Acid Sequence , Blotting, Western , Female , Homeodomain Proteins/metabolism , Humans , Immunohistochemistry , Male , Middle Aged , Molecular Sequence Data , Multigene Family , Placenta/metabolism , Pregnancy , Pregnancy Trimester, First , Pregnancy Trimester, Second , Testis/metabolism
13.
Mol Hum Reprod ; 18(10): 477-88, 2012 Oct.
Article En | MEDLINE | ID: mdl-22689537

Mammalian spermatogenesis is maintained by spermatogonial stem cells (SSCs). However, since evidentiary assays and unequivocal markers are still missing in non-human primates (NHPs) and man, the identity of primate SSCs is unknown. In contrast, in mice, germ cell transplantation studies have functionally demonstrated the presence of SSCs. LIN28 is an RNA-binding pluripotent stem cell factor, which is also strongly expressed in undifferentiated mouse spermatogonia. By contrast, two recent reports indicated that LIN28 is completely absent from adult human testes. Here, we analyzed LIN28 expression in marmoset monkey (Callithrix jacchus) and human testes during development and adulthood and compared it with that in mice. In the marmoset, LIN28 was strongly expressed in migratory primordial germ cells and gonocytes. Strikingly, we found a rare LIN28-positive subpopulation of spermatogonia also in adult marmoset testis. This was corroborated by western blotting and quantitative RT-PCR. Importantly, in contrast to previous publications, we found LIN28-positive spermatogonia also in normal adult human and additional adult NHP testes. Some seasonal breeders exhibit a degenerated (involuted) germinal epithelium consisting only of Sertoli cells and SSCs during their non-breeding season. The latter re-initiate spermatogenesis prior to the next breeding-season. Fully involuted testes from a seasonal hamster and NHP (Lemur catta) exhibited numerous LIN28-positive spermatogonia, indicating an SSC identity of the labeled cells. We conclude that LIN28 is differentially expressed in mouse and NHP spermatogonia and might be a marker for a rare SSC population in NHPs and man. Further characterization of the LIN28-positive population is required.


Pluripotent Stem Cells/metabolism , RNA-Binding Proteins/biosynthesis , RNA-Binding Proteins/metabolism , Spermatogonia/metabolism , Testis/metabolism , Animals , Biomarkers , Callithrix , Cells, Cultured , Cricetinae , Fetus , Humans , Male , Mice , Spermatogenesis , Testis/embryology
14.
Cells Tissues Organs ; 196(3): 206-20, 2012.
Article En | MEDLINE | ID: mdl-22572102

SALL4 (sal-like protein 4) is a pluripotency transcription factor, which is highly expressed in embryonic stem (ES) cells and which is essential for mouse preimplantation development. In adult mouse organs, Sall4 mRNA is highly expressed in the testis and ovary, while there is only little or no expression in other organs. There is also a high expression of SALL4 in human testicular germ cell tumors. However, there is as yet no detailed analysis of SALL4 expression during mammalian testicular development. We analyzed SALL4 expression in ES cells, preimplantation embryos, and the developing and adult testis of a nonhuman primate (NHP) species, the common marmoset monkey (Callithrix jacchus). Immunofluorescence revealed SALL4 in the nuclei of marmoset ES cells and preimplantation embryos. Marmoset SALL4 isoform analysis in ES cells and newborn and adult testis by RT- PCR and Western blotting showed two different isoforms, SALL4-A and SALL4-B. Immunohistochemistry localized this transcription factor to the nuclei of primordial germ cells and most gonocytes in the prenatal and early postnatal marmoset testis. In the pubertal and adult testis SALL4 was present in undifferentiated spermatogonia. In the developing and adult human and mouse testis SALL4 expression mimicked the pattern in the marmoset. Adult testes from additional NHP species, the treeshrew, the cat and the dog also exhibited SALL4 in undifferentiated spermatogonia, indicating a conserved expression in the mammalian testis. Taking into account the importance of SALL4 for mouse development, we conclude that SALL4 may play an important role during mammalian germ cell development and is involved in the regulation of spermatogonial proliferation in the adult testis.


Callithrix/physiology , DNA-Binding Proteins/genetics , Gene Expression Regulation, Developmental , Meiosis , Spermatozoa/metabolism , Testis/metabolism , Transcription Factors/genetics , Animals , Cell Nucleus/metabolism , Cell Proliferation , Cells, Cultured , DNA-Binding Proteins/metabolism , Embryo, Mammalian , Embryonic Stem Cells/cytology , Humans , Male , Mice , RNA, Messenger/metabolism , Recombinant Proteins , Sexual Maturation/physiology , Species Specificity , Spermatogonia/cytology , Spermatogonia/metabolism , Spermatozoa/cytology , Testis/embryology , Transcription Factors/metabolism
15.
Hum Reprod ; 27(6): 1754-67, 2012 Jun.
Article En | MEDLINE | ID: mdl-22442249

BACKGROUND: Several studies have reported the generation of spermatogonia-derived pluripotent stem cells from human testes. The initial aim of the present study was the derivation of equivalent stem cells from an established and experimentally accessible non-human primate model, the common marmoset monkey (Callithrix jacchus). However, an essential prerequisite in the absence of transgenic reporters in primates and man is the availability of validated endogenous markers for the identification of specific cell types in vitro. METHODS AND RESULTS: We cultured marmoset testicular cells in a similar way to that described for human testis-derived pluripotent cells and set out to characterize these cultures under different conditions and in differentiation assays applying established marker panels. Importantly, the cells emerged as testicular multipotent stromal cells (TMSCs) instead of (pluripotent) germ cell-derived cells. TMSCs expressed many markers such as GFR-α, GPR125, THY-1 (CD90), ITGA6, SSEA4 and TRA-1-81, which were considered as spermatogonia specific and were previously used for the enrichment or characterization of spermatogonia. Proliferation of TMSCs was highly dependent on basic fibroblast growth factor, a growth factor routinely present in germ cell culture media. As reliable markers for the distinction between spermatogonia and TMSCs, we established VASA, in combination with the spermatogonia-expressed factors, MAGEA4, PLZF and SALL4. CONCLUSIONS: Marmoset monkey TMSCs and spermatogonia exhibit an overlap of markers, which may cause erroneous interpretations of experiments with testis-derived stem cells in vitro. We provide a marker panel for the unequivocal identification of spermatogonia providing a better basis for future studies on primate, including human, testis-derived stem cells.


Biomarkers/analysis , Callithrix , Multipotent Stem Cells/chemistry , Spermatogonia/chemistry , Testis/cytology , Animals , Cells, Cultured , Male , Pluripotent Stem Cells/chemistry , Stromal Cells/chemistry
16.
Exp Clin Endocrinol Diabetes ; 120(2): 73-9, 2012 Feb.
Article En | MEDLINE | ID: mdl-22068615

BACKGROUND: Polycystic ovary syndrome (PCOS) is a frequent heterogenic disorder with a familial background. Androgenic effects, determining the clinical features of the syndrome, are mediated by the androgen receptor (AR), whose activity is modulated by a genetic polymorphism. We investigated the role of the CAG repeat polymorphism of the androgen receptor in PCOS. METHODS: In the infertility unit of a university clinic, 72 PCOS patients were compared with 179 ovulatory controls undergoing a standardized diagnostic work-up. The number of CAG repeats was determined by PCR, labelling with IR-800 and PAGE. X-chromosome inactivation was assessed by a methylation-sensitive assay. RESULTS: Compared to controls, PCOS patients displayed a shorter mean CAG repeat length, encoding for higher AR activity (P=0.001). CAG repeat length correlated inversely with oligomenorrhea, a central androgen dependent feature of the syndrome (P=0.005). In a binomial regression analysis including BMI, LH and free testosterone, CAG repeat length was identified as an independent risk factor for PCOS (P=0.002). CONCLUSIONS: The CAG repeat polymorphism could constitute one of the genetic factors modulating the syndrome's phenotype, contributing to its clinical heterogeneity and associated metabolic consequences.


Polycystic Ovary Syndrome/genetics , Receptors, Androgen/genetics , Trinucleotide Repeat Expansion/genetics , Adult , Base Sequence , Case-Control Studies , Female , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Menstrual Cycle/genetics , Menstrual Cycle/physiology , Phenotype , Polycystic Ovary Syndrome/etiology , Polycystic Ovary Syndrome/metabolism , Polymorphism, Genetic/physiology , Receptors, Androgen/physiology , Risk Factors , X Chromosome Inactivation/physiology , Young Adult
17.
Br J Biomed Sci ; 68(3): 138-42, 2011.
Article En | MEDLINE | ID: mdl-21950206

Prostate cancer has become the most common cancer in Nigerian men. The growth of the prostate gland depends on circulating androgens and intracellular steroid signalling pathways. The effects of androgens are mediated through the androgen receptor (AR), a nuclear transcription factor encoded by the AR gene. The common polymorphisms, CAG and GGN repeats, in exon 1 of this gene have been implicated as possible risk factors. Thus far, existing supporting data are scanty and none are from sub-Saharan African populations. Therefore, this study investigates the possible association between AR polymorphism repeat length (CAG and GGN) and prostate cancer in Nigerians. A total of 261 subjects (70 with prostate cancer, 68 with benign prostate hyperplasia [BPH], 123 age-matched apparently normal subjects as controls) were studied. CAG and GGN repeats length were determined by fragment length analysis using GeneScan. The CAG repeat length in prostate cancer and in BPH compared to the controls was significantly different (P < 0.05) with reduce length of CAG repeats showing a significant odds ratio (OR) in both cases. However, this was not observed in GGN repeat length, which showed no significant difference between cases and controls (P > 0.05). CAG and GGN haplotype variation showed no significant difference between cases and controls (P > 0.05), except that the haplotypes CAG > or =21 and GGN < or =21 were more common in the control group. The results of this study, the first from sub-Saharan Africa, supports the hypothesis that reduced CAG repeat length is a risk factor for prostate cancer, and also suggests an association with BPH.


Carcinoma/genetics , Prostatic Hyperplasia/genetics , Prostatic Neoplasms/genetics , Receptors, Androgen/genetics , Aged , Case-Control Studies , Haplotypes , Humans , Male , Microsatellite Repeats , Middle Aged , Nigeria , Polymorphism, Genetic , Prospective Studies
18.
Mol Hum Reprod ; 17(9): 545-9, 2011 Sep.
Article En | MEDLINE | ID: mdl-21482616

DNA methylation events during spermatogenesis have important implications for gamete integrity and transmission of epigenetic information to the next generation. However, the role of DNA methyltransferases in the disorders of human spermatogenesis has not been elucidated. The aim of the present study was to evaluate the expression of DNMT3B, crucial for full germ cell methylation, in testicular germ cells of patients with spermatogenic arrest and to determine whether or not there is an association with the global methylation status. In order to determine the DNMTs expression status at various stages of spermatogenesis, immunohistochemical localization was performed on 16 fertile controls having normal spermatogenesis and 11 patients with bilateral spermatogenic arrest. DNMT3B was expressed in most of the germ cell types in both controls and patients with bilateral spermatogenic arrest. The number of DNMT3B positive preleptotene/zygotene cells and pachytene spermatocytes was significantly lower in patients with bilateral arrest. However, evaluation of 5-methylcytosine, a global methylation marker, in the few matured germ cells of these patients did not reveal altered methylation. In conclusion, the global methylation status of germ cells is not affected by spermatogenic defects in spite of aberrant DNMT3B expression indicating the necessity of proper methylation for full spermatogenesis.


DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , Germ Cells/enzymology , Germ Cells/physiology , Oligospermia/enzymology , Oligospermia/genetics , Adult , Animals , Azoospermia/congenital , Cytosine/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , Epigenesis, Genetic , Germ Cells/cytology , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Male , Middle Aged , Oligospermia/physiopathology , Spermatogenesis/physiology , Testis/cytology , DNA Methyltransferase 3B
19.
Sex Dev ; 5(2): 60-9, 2011.
Article En | MEDLINE | ID: mdl-21293114

Stochastic, environmentally and/or genetically induced disturbances in the genome-wide epigenetic reprogramming processes during male germ-cell development may contribute to male infertility. To test this hypothesis, we have studied the methylation levels of 2 paternally (H19 and GTL2) and 5 maternally methylated (LIT1, MEST, NESPAS, PEG3, and SNRPN) imprinted genes, as well as of ALU and LINE1 repetitive elements in 141 sperm samples, which were used for assisted reproductive technologies (ART), including 106 couples with strictly male-factor or combined male and female infertility and 28 couples with strictly female-factor infertility. Aberrant methylation imprints showed a significant association with abnormal semen parameters, but did not seem to influence ART outcome. Repeat methylation also differed significantly between sperm samples from infertile and presumably fertile males. However, in contrast to imprinted genes, ALU methylation had a significant impact on pregnancy and live-birth rate in couples with male-factor or combined infertility. ALU methylation was significantly higher in sperm samples leading to pregnancy and live-birth than in those that did not. Sperm samples leading to abortions showed significantly lower ALU methylation levels than those leading to the birth of a baby.


DNA Methylation/physiology , DNA/genetics , Genomic Imprinting/physiology , Infertility, Male/genetics , Repetitive Sequences, Nucleic Acid/genetics , Spermatozoa/metabolism , Adult , DNA Methylation/genetics , Female , Genomic Imprinting/genetics , Humans , Kruppel-Like Transcription Factors/genetics , Male , Potassium Channels, Voltage-Gated/genetics , Pregnancy , Proteins/genetics , RNA, Long Noncoding , snRNP Core Proteins/genetics
20.
J Med Primatol ; 40(2): 111-9, 2011 Apr.
Article En | MEDLINE | ID: mdl-21044091

BACKGROUND: Common marmoset monkeys (Callithrix jacchus) are readily used in biomedical research. However, superovulation for embryonic stem cell production and developmental research still remain difficult. Inexplicably, follicle-stimulating hormone (FSH) as key player in superovulation has to be administered in extremely high dosages in this non-human primate compared to human. METHODS: To evaluate whether marmoset FSH (cjFSH) is functionally more competent than its human homologue on the marmoset FSH receptor (cjFSHR), we established in vitro a homologous system characterizing homologous and recombinantly produced cjFSH. RESULTS: Upon stimulation of two cell lines stably expressing either the marmoset or the human FSH receptor (cj/hFSHR), respectively, the second messenger signaling of the activated receptor displayed no significant difference in ED(50) values. Thermostability of cjFSH was significantly prolonged by roughly 20% on both FSHRs. CONCLUSION: High FSH dosage in marmoset superovulation cannot be explained by enhanced biopotency of the natural animal's gonadotropin.


Callithrix/genetics , Cloning, Molecular , Follicle Stimulating Hormone/genetics , Receptors, FSH/metabolism , Amino Acid Sequence , Animals , Callithrix/metabolism , Female , Follicle Stimulating Hormone/chemistry , Follicle Stimulating Hormone/metabolism , Follicle Stimulating Hormone, Human/chemistry , Follicle Stimulating Hormone, Human/genetics , Follicle Stimulating Hormone, Human/metabolism , Humans , Receptors, FSH/chemistry , Receptors, FSH/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Superovulation
...