Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 13(7): e10260, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37404703

RESUMEN

Reliable estimates of population size and demographic rates are central to assessing the status of threatened species. However, obtaining individual-based demographic rates requires long-term data, which is often costly and difficult to collect. Photographic data offer an inexpensive, noninvasive method for individual-based monitoring of species with unique markings, and could therefore increase available demographic data for many species. However, selecting suitable images and identifying individuals from photographic catalogs is prohibitively time-consuming. Automated identification software can significantly speed up this process. Nevertheless, automated methods for selecting suitable images are lacking, as are studies comparing the performance of the most prominent identification software packages. In this study, we develop a framework that automatically selects images suitable for individual identification, and compare the performance of three commonly used identification software packages; Hotspotter, I3S-Pattern, and WildID. As a case study, we consider the African wild dog, Lycaon pictus, a species whose conservation is limited by a lack of cost-effective large-scale monitoring. To evaluate intraspecific variation in the performance of software packages, we compare identification accuracy between two populations (in Kenya and Zimbabwe) that have markedly different coat coloration patterns. The process of selecting suitable images was automated using convolutional neural networks that crop individuals from images, filter out unsuitable images, separate left and right flanks, and remove image backgrounds. Hotspotter had the highest image-matching accuracy for both populations. However, the accuracy was significantly lower for the Kenyan population (62%), compared to the Zimbabwean population (88%). Our automated image preprocessing has immediate application for expanding monitoring based on image matching. However, the difference in accuracy between populations highlights that population-specific detection rates are likely and may influence certainty in derived statistics. For species such as the African wild dog, where monitoring is both challenging and expensive, automated individual recognition could greatly expand and expedite conservation efforts.

2.
PLoS One ; 13(2): e0190369, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29415031

RESUMEN

The rapid decline of the African lion (Panthera leo) has raised conservation concerns. In the Savé Valley Conservancy (SVC), in the Lowveld of Zimbabwe, lions were presumably reduced to approximately 5 to 10 individuals. After ten lions were reintroduced in 2005, the population has recovered to over 200 lions in 2016. Although the increase of lions in the SVC seems promising, a question remains whether the population is genetically viable, considering their small founding population. In this study, we document the genetic diversity in the SVC lion population using both mitochondrial and nuclear genetic markers, and compare our results to literature from other lion populations across Africa. We also tested whether genetic diversity is spatially structured between lion populations residing on several reserves in the Lowveld of Zimbabwe. A total of 42 lions were genotyped successfully for 11 microsatellite loci. We confirmed that the loss of allelic richness (probably resulting from genetic drift and small number of founders) has resulted in low genetic diversity and inbreeding. The SVC lion population was also found to be genetically differentiated from surrounding population, as a result of genetic drift and restricted natural dispersal due to anthropogenic barriers. From a conservation perspective, it is important to avoid further loss of genetic variability in the SVC lion population and maintain evolutionary potential required for future survival. Genetic restoration through the introduction of unrelated individuals is recommended, as this will increase genetic heterozygosity and improve survival and reproductive fitness in populations.


Asunto(s)
Leones/genética , Animales , Conservación de los Recursos Naturales , Zimbabwe
3.
PeerJ ; 5: e4096, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29250465

RESUMEN

Assessing the numbers and distribution of threatened species is a central challenge in conservation, often made difficult because the species of concern are rare and elusive. For some predators, this may be compounded by their being sparsely distributed over large areas. Such is the case with the cheetah Acinonyx jubatus. The IUCN Red List process solicits comments, is democratic, transparent, widely-used, and has recently assessed the species. Here, we present additional methods to that process and provide quantitative approaches that may afford greater detail and a benchmark against which to compare future assessments. The cheetah poses challenges, but also affords unique opportunities. It is photogenic, allowing the compilation of thousands of crowd-sourced data. It is also persecuted for killing livestock, enabling estimation of local population densities from the numbers persecuted. Documented instances of persecution in areas with known human and livestock density mean that these data can provide an estimate of where the species may or may not occur in areas without observational data. Compilations of extensive telemetry data coupled with nearly 20,000 additional observations from 39 sources show that free-ranging cheetahs were present across approximately 789,700 km2 of Namibia, Botswana, South Africa, and Zimbabwe (56%, 22%, 12% and 10% respectively) from 2010 to 2016, with an estimated adult population of 3,577 animals. We identified a further 742,800 km2 of potential cheetah habitat within the study region with low human and livestock densities, where another ∼3,250 cheetahs may occur. Unlike many previous estimates, we make the data available and provide explicit information on exactly where cheetahs occur, or are unlikely to occur. We stress the value of gathering data from public sources though these data were mostly from well-visited protected areas. There is a contiguous, transboundary population of cheetah in southern Africa, known to be the largest in the world. We suggest that this population is more threatened than believed due to the concentration of about 55% of free-ranging individuals in two ecoregions. This area overlaps with commercial farmland with high persecution risk; adult cheetahs were removed at the rate of 0.3 individuals per 100 km2 per year. Our population estimate for confirmed cheetah presence areas is 11% lower than the IUCN's current assessment for the same region, lending additional support to the recent call for the up-listing of this species from vulnerable to endangered status.

4.
Mov Ecol ; 5: 10, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28417004

RESUMEN

BACKGROUND: Spacing patterns mediate competitive interactions between conspecifics, ultimately increasing fitness. The degree of territorial overlap between neighbouring African wild dog (Lycaon pictus) packs varies greatly, yet the role of factors potentially affecting the degree of overlap, such as relatedness and pack size, remain unclear. We used movement data from 21 wild dog packs to calculate the extent of territory overlap (20 dyads). RESULTS: On average, unrelated neighbouring packs had low levels of overlap restricted to the peripheral regions of their 95% utilisation kernels. Related neighbours had significantly greater levels of peripheral overlap. Only one unrelated dyad included overlap between 75%-75% kernels, but no 50%-50% kernels overlapped. However, eight of 12 related dyads overlapped between their respective 75% kernels and six between the frequented 50% kernels. Overlap between these more frequented kernels confers a heightened likelihood of encounter, as the mean utilisation intensity per unit area within the 50% kernels was 4.93 times greater than in the 95% kernels, and 2.34 times greater than in the 75% kernels. Related packs spent significantly more time in their 95% kernel overlap zones than did unrelated packs. Pack size appeared to have little effect on overlap between related dyads, yet among unrelated neighbours larger packs tended to overlap more onto smaller packs' territories. However, the true effect is unclear given that the model's confidence intervals overlapped zero. CONCLUSIONS: Evidence suggests that costly intraspecific aggression is greatly reduced between related packs. Consequently, the tendency for dispersing individuals to establish territories alongside relatives, where intensively utilised portions of ranges regularly overlap, may extend kin selection and inclusive fitness benefits from the intra-pack to inter-pack level. This natural spacing system can affect survival parameters and the carrying capacity of protected areas, having important management implications for intensively managed populations of this endangered species.

5.
PLoS One ; 11(10): e0164676, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27732663

RESUMEN

African wild dogs (Lycaon pictus) are endangered and their population continues to decline throughout their range. Given their conservation status, more research focused on their population dynamics, population growth and age specific mortality is needed and this requires reliable estimates of age and age of mortality. Various age determination methods from teeth and skull measurements have been applied in numerous studies and it is fundamental to test the validity of these methods and their applicability to different species. In this study we assessed the accuracy of estimating chronological age and age class of African wild dogs, from dental age measured by (i) counting cementum annuli (ii) pulp cavity/tooth width ratio, (iii) tooth wear (measured by tooth crown height) (iv) tooth wear (measured by tooth crown width/crown height ratio) (v) tooth weight and (vi) skull measurements (length, width and height). A sample of 29 African wild dog skulls, from opportunistically located carcasses was analysed. Linear and ordinal regression analysis was done to investigate the performance of each of the six age determination methods in predicting wild dog chronological age and age class. Counting cementum annuli was the most accurate method for estimating chronological age of wild dogs with a 79% predictive capacity, while pulp cavity/tooth width ratio was also a reliable method with a 68% predictive capacity. Counting cementum annuli and pulp cavity/tooth width ratio were again the most accurate methods for separating wild dogs into three age classes (6-24 months; 25-60 months and > 60 months), with a McFadden's Pseudo-R2 of 0.705 and 0.412 respectively. The use of the cementum annuli method is recommended when estimating age of wild dogs since it is the most reliable method. However, its use is limited as it requires tooth extraction and shipping, is time consuming and expensive, and is not applicable to living individuals. Pulp cavity/tooth width ratio is a moderately reliable method for estimating both chronological age and age class. This method gives a balance between accuracy, cost and practicability, therefore it is recommended when precise age estimations are not paramount.


Asunto(s)
Determinación de la Edad por los Dientes , Canidae , Especies en Peligro de Extinción , África , Determinación de la Edad por los Dientes/métodos , Envejecimiento , Animales , Canidae/anatomía & histología , Canidae/fisiología , Cemento Dental/anatomía & histología , Cavidad Pulpar/anatomía & histología , Femenino , Masculino , Dinámica Poblacional , Cráneo/anatomía & histología , Diente/anatomía & histología
6.
PLoS One ; 9(6): e99686, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24918935

RESUMEN

Compared to their main competitors, African wild dogs (Lycaon pictus) have inferior competitive abilities and interspecific competition is a serious fitness-limiting factor. Lions (Panthera leo) are the dominant large carnivore in African savannah ecosystems and wild dogs avoid them both spatially and temporally. Wild dog young are particularly vulnerable and suffer high rates of mortality from lions. Since lions do not utilize all parts of the landscape with an equal intensity, spatial variation in lion densities can be exploited by wild dogs both during their general ranging behaviour, but more specifically when they are confined to a den with vulnerable young. Since patches of rugged terrain are associated with lower lion densities, we hypothesized that these comparatively safe habitats should be selected by wild dogs for denning. We investigated the relationship between the distribution of 100 wild dog den sites and the occurrence of rugged terrain in four wild dog populations located in Tanzania, Zimbabwe and South Africa. A terrain ruggedness index was derived from a 90 m digital elevation model and used to map terrain ruggedness at each site. We compared characteristics of actual and potential (random) den sites to determine how wild dogs select den sites. The distributions of wild dog dens were strongly associated with rugged terrain and wild dogs actively selected terrain that was more rugged than that available on average. The likelihood of encountering lions is reduced in these habitats, minimizing the risk to both adults and pups. Our findings have important implications for the conservation management of the species, especially when assessing habitat suitability for potential reintroductions. The simple technique used to assess terrain ruggedness may be useful to investigate habitat suitability, and even predict highly suitable denning areas, across large landscapes.


Asunto(s)
Conducta Animal/fisiología , Perros/fisiología , Leones/fisiología , Animales , Ecosistema , Pradera , Riesgo , Sudáfrica , Tanzanía , Zimbabwe
7.
PLoS One ; 8(3): e59044, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23527083

RESUMEN

Large African predators, especially lions (Panthera leo) and leopards (Panthera pardus), are financially valuable for ecotourism and trophy hunting operations on land also utilized for the production of other wildlife species for the same purpose. Predation of ungulates used for trophy hunting can create conflict with landholders and trade off thus exists between the value of lions and leopards and their impact on ungulate populations. Therefore productionist and conservation trade-offs are complexly graded and difficult to resolve. We investigated this with a risk-benefit analysis on a large private wildlife production area in Zimbabwe. Our model showed that lions result in substantial financial costs through predation on wild ungulates that may not be offset by profits from hunting them, whereas the returns from trophy hunting of leopards are projected to exceed the costs due to leopard predation. In the absence of additional income derived from photo-tourism the number of lions may need to be managed to minimize their impact. Lions drive important ecological processes, but there is a need to balance ecological and financial imperatives on wildlife ranches, community wildlife lands and other categories of multiple use land used for wildlife production. This will ensure the competitiveness of wildlife based land uses relative to alternatives. Our findings may thus be limited to conservancies, community land-use areas and commercial game ranches, which are expansive in Africa, and should not necessarily applied to areas where biodiversity conservation is the primary objective, even if hunting is allowed there.


Asunto(s)
Biodiversidad , Carnívoros , Conservación de los Recursos Naturales , Ecosistema , Animales , Conservación de los Recursos Naturales/economía , Conservación de los Recursos Naturales/tendencias , Actividades Humanas , Humanos , Leones , Panthera , Dinámica Poblacional , Conducta Predatoria , Zimbabwe
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA