Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 73(3): 770-783, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-34050753

RESUMEN

Plants have evolved complex mechanisms to adapt to the changing nitrogen levels in the environment. In Arabidopsis, more than a dozen nitrate signaling regulatory genes have been characterized, including the NODULE INCEPTION-LIKE PROTEIN (AtNLP) genes, which play essential roles in nitrate signaling. However, whether NLP genes in the Triticeae crops are involved in nitrate regulation and nitrogen use efficiency (NUE) remains unknown. Here, we isolated a barley (Hordeum vulgare L.) mutant, hvnlp2-1, from a TILLING (Targeting Local Lesions IN Genomes) population and constructed two RNAi lines, hvnlp2-2 and hvnlp2-3, to study the function of HvNLP2. The expression of the nitrate-responsive genes was substantially inhibited after nitrate treatment in the hvnlp2 mutants, indicating that HvNLP2 controls nitrate signaling. Nitrate content was significantly higher in the hvnlp2 mutants, which may result from the decreased assimilation of nitrogen caused by reduced nitrate reductase activity and expression of nitrate assimilatory genes. HvNLP2 is localized to the nucleus in the presence of nitrate. Further investigation showed that HvNLP2 binds to and activates the nitrate-responsive cis-elements. Moreover, hvnlp2 exhibited reduced biomass, seed yield, and NUE. Therefore, HvNLP2 controls nitrate signaling and plays an important role in NUE.


Asunto(s)
Hordeum , Nitratos , Productos Agrícolas/genética , Hordeum/genética , Hordeum/metabolismo , Nitratos/metabolismo , Nitrógeno/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
J Exp Bot ; 72(18): 6140-6149, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34089597

RESUMEN

In eukaryotic cells, nuclear activities are isolated from other cellular functions by the nuclear envelope. Because the nuclear envelope provides a diffusion barrier for macromolecules, a complex nuclear transport machinery has evolved that is highly conserved from yeast to plants and mammals. Among those components, the importin ß family is the most important one. In this review, we summarize recent findings on the biological function of importin ß family members, including development, reproduction, abiotic stress responses, and plant immunity. In addition to the traditional nuclear transport function, we highlight the new molecular functions of importin ß, including protein turnover, miRNA regulation, and signaling. Taken together, our review will provide a systematic view of this versatile protein family in plants.


Asunto(s)
Proteínas de Plantas , beta Carioferinas , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Membrana Nuclear/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , beta Carioferinas/genética , beta Carioferinas/metabolismo
3.
Plant Physiol ; 180(3): 1725-1739, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31036755

RESUMEN

The phytohormone salicylic acid (SA) is well known for its induction of pathogenesis-related proteins and systemic acquired resistance; SA also has specific effects on plant growth and development. Here we analyzed the effect of SA on Arabidopsis (Arabidopsis thaliana) root development. We show that exogenous SA treatment at low (below 50 µM) and high (greater than 50 µM) concentrations affect root meristem development in two different PR1-independent ways. Low-concentration SA promoted adventitious roots and altered architecture of the root apical meristem, whereas high-concentration SA inhibited all growth processes in the root. All exposures to exogenous SA led to changes in auxin synthesis and transport. A wide range of SA treatment concentrations activated auxin synthesis, but the effect of SA on auxin transport was dose dependent. Mathematical modeling of auxin synthesis and transport predicted auxin accumulation or depletion in the root tip following low- or high-concentration SA treatments, respectively. SA-induced auxin accumulation led to the formation of more layers of columella initials, an additional cortical cell layer (middle cortex), and extra files of epidermis, cortex, and endodermis cells. Suppression of SHORT ROOT and activation of CYCLIN D6;1 mediated the changes in radial architecture of the root. We propose that low-concentration SA plays an important role in shaping root meristem structure and root system architecture.


Asunto(s)
Arabidopsis/efectos de los fármacos , Ácidos Indolacéticos/metabolismo , Meristema/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Ácido Salicílico/farmacología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/efectos de los fármacos , Vías Biosintéticas/efectos de los fármacos , Vías Biosintéticas/genética , Ciclinas/genética , Ciclinas/metabolismo , Relación Dosis-Respuesta a Droga , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Meristema/genética , Meristema/crecimiento & desarrollo , Microscopía Confocal , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Ácido Salicílico/metabolismo , Plantones/efectos de los fármacos , Plantones/genética , Plantones/crecimiento & desarrollo
4.
Genes Dev ; 31(6): 617-627, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28404632

RESUMEN

In many plants, the asymmetric division of the zygote sets up the apical-basal axis of the embryo. Unlike animals, plant zygotes are transcriptionally active, implying that plants have evolved specific mechanisms to control transcriptional activation of patterning genes in the zygote. In Arabidopsis, two pathways have been found to regulate zygote asymmetry: YODA (YDA) mitogen-activated protein kinase (MAPK) signaling, which is potentiated by sperm-delivered mRNA of the SHORT SUSPENSOR (SSP) membrane protein, and up-regulation of the patterning gene WOX8 by the WRKY2 transcription factor. How SSP/YDA signaling is transduced into the nucleus and how these pathways are integrated have remained elusive. Here we show that paternal SSP/YDA signaling directly phosphorylates WRKY2, which in turn leads to the up-regulation of WOX8 transcription in the zygote. We further discovered the transcription factors HOMEODOMAIN GLABROUS11/12 (HDG11/12) as maternal regulators of zygote asymmetry that also directly regulate WOX8 transcription. Our results reveal a framework of how maternal and paternal factors are integrated in the zygote to regulate embryo patterning.


Asunto(s)
Arabidopsis/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Transcripción Genética , Cigoto/metabolismo , Arabidopsis/enzimología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Sistema de Señalización de MAP Quinasas , Herencia Materna , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Herencia Paterna , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cigoto/enzimología
5.
New Phytol ; 213(1): 95-104, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27523393

RESUMEN

Homeodomain-leucine zipper proteins (HD-ZIPs) form a plant-specific family of transcription factors functioning as homo- or heterodimers. Certain members of all four classes of this family are involved in embryogenesis, the focus of this review. They support auxin biosynthesis, transport and response, which are in turn essential for the apical-basal patterning of the embryo, radicle formation and outgrowth of the cotyledons. They transcriptionally regulate meristem regulators to maintain the shoot apical meristem once it is initiated. Some members are specific to the protoderm, the outermost layer of the embryo, and play a role in shoot apical meristem function. Within classes, homeodomain-leucine zippers tend to act redundantly during embryo development, and there are many examples of regulation within and between classes of homeodomain-leucine zippers. This indicates a complex network of regulation that awaits future experiments to uncover.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Leucina Zippers , Plantas/embriología , Plantas/genética , Proteínas de Homeodominio/química , Ácidos Indolacéticos/metabolismo , Meristema/embriología
6.
Curr Biol ; 26(13): R530-R532, 2016 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-27404239

RESUMEN

Some plants can live for thousands of years, facing the problem of preventing accumulation of deleterious mutations. A recent study shows that massive tree stature requires surprisingly few stem cell divisions, and that the mutational load is not proportional to stature, but to branching order.


Asunto(s)
Mutación , Desarrollo de la Planta , Plantas/genética , Selección Genética , Evolución Biológica , Modelos Genéticos
7.
Dev Cell ; 33(5): 576-88, 2015 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-26028217

RESUMEN

Stem cells in plants and animals are maintained pluripotent by signals from adjacent niche cells. In plants, WUSCHEL HOMEOBOX (WOX) transcription factors are central regulators of stem cell maintenance in different meristem types, yet their molecular mode of action has remained elusive. Here we show that in the Arabidopsis root meristem, the WOX5 protein moves from the root niche organizer, the quiescent center, into the columella stem cells, where it directly represses the transcription factor gene CDF4. This creates a gradient of CDF4 transcription, which promotes differentiation opposite to the WOX5 gradient, allowing stem cell daughter cells to exit the stem cell state. We further show that WOX5 represses CDF4 transcription by recruiting TPL/TPR co-repressors and the histone deacetylase HDA19, which consequently induces histone deacetylation at the CDF4 regulatory region. Our results show that chromatin-mediated repression of differentiation programs is a common strategy in plant and animal stem cell niches.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Diferenciación Celular , Cromatina/genética , Proteínas de Homeodominio/metabolismo , Meristema/citología , Raíces de Plantas/citología , Células Madre/citología , Acetilación , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Inmunoprecipitación de Cromatina , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Proteínas de Homeodominio/genética , Hibridación in Situ , Meristema/metabolismo , Análisis por Micromatrices , Microscopía Confocal , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Raíces de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Transducción de Señal , Nicho de Células Madre , Células Madre/metabolismo
8.
Curr Opin Plant Biol ; 17: 96-102, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24507500

RESUMEN

Meristems are centers of cell proliferation with a defined internal structure that is dynamically perpetuated throughout a plant's life although its constituent cells constantly change. When progressing from stem cell state towards differentiation, individual cells adopt developmental programs according to their current position within the meristem provided by signals from neighboring cells. In recent years, progress has been made in the identification of signaling pathways and their integration into mechanistic networks.


Asunto(s)
Arabidopsis/fisiología , Flores/fisiología , Meristema/fisiología , Brotes de la Planta/fisiología , Transducción de Señal/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Ácidos Indolacéticos/metabolismo , Luz , Meristema/genética , Meristema/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Transducción de Señal/genética , Transducción de Señal/efectos de la radiación
9.
Plant Mol Biol ; 58(3): 317-31, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16021398

RESUMEN

Knotted-like homeobox (KNOX) genes encode important regulators of shoot development in flowering plants. In Arabidopsis, class I KNOX genes are part of a regulatory system that contributes to indeterminacy of shoot development, delimitation of leaf primordia and internode development. In other species, class I KNOX genes have also been recruited in the control of marginal blastozone fractionation during dissected leaf development. Here we report the isolation of class I KNOX genes from two species of the basal eudicot family Papaveraceae, Chelidonium majus and Eschscholzia californica. Sequence comparisons and expression patterns indicate that these genes are orthologs of SHOOTMERISTEMLESS (STM), a class I KNOX gene from Arabidopsis. Both genes are expressed in the center of vegetative and floral shoot apical meristems (SAM), but downregulated at leaf or floral organ initiating sites. While Eschscholzia californica STM (EcSTM) is again upregulated during acropetal pinna formation, in situ hybridization could not detect Chelidonium majus STM (CmSTM) transcripts at any stage of basipetal leaf development, indicating divergent evolution of STM gene function in leaves within Papaveraceae. Immunolocalization of KNOX proteins indicate that other gene family members may control leaf dissection in both species. The contrasting direction of pinna initiation in the two species was also investigated using Histone H4 expression. Leaves at early stages of development did not reveal notable differences in cell division activity of the elongating leaf axis, suggesting that differential meristematic growth may not play a role in determining the observed dissection patterns.


Asunto(s)
Perfilación de la Expresión Génica , Histonas/genética , Proteínas de Homeodominio/genética , Papaveraceae/genética , Proteínas de Plantas/genética , Brotes de la Planta/genética , Secuencia de Aminoácidos , Chelidonium/genética , Chelidonium/crecimiento & desarrollo , Chelidonium/metabolismo , ADN Complementario/química , ADN Complementario/genética , Eschscholzia/genética , Eschscholzia/crecimiento & desarrollo , Eschscholzia/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Histonas/análisis , Proteínas de Homeodominio/análisis , Inmunohistoquímica , Hibridación in Situ/métodos , Microscopía Electrónica de Rastreo , Datos de Secuencia Molecular , Papaveraceae/crecimiento & desarrollo , Papaveraceae/metabolismo , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/análisis , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/ultraestructura , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Especificidad de la Especie
10.
Dev Genes Evol ; 215(6): 313-9, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15791422

RESUMEN

Peltate leaf architecture has evolved from conventional bifacial leaves many times in flowering plant evolution. Characteristics of peltate leaves, such as the differentiation of a cross zone and of a radially symmetric, margin-less petiole, have also been observed in mutants of genes responsible for adaxial-abaxial polarity establishment. This suggests that altered regulation of such genes provided a mechanism for the evolution of peltate leaf structure. Here, we show that evolution of leaf peltation in Tropaeolum majus, a species distantly related to Arabidopsis thaliana, was associated with altered expression of Tropaeolum majus FILAMENTOUS FLOWER (TmFIL), a gene conferring abaxial identity. In situ hybridization indicates that adaxial and abaxial domains are established in early leaf primordia as in species with bifacial leaves. Upon initiation of the cross zone by fusion of the blade margins, localized expansion of TmFIL to the upper leaf side could be seen, indicating a local loss of adaxial leaf identity. The observed changes in expression are consistent with a role of TmFIL in radialization of the petiole and circularization of the leaf blade margin by the cross zone. In addition, expression was observed in segment primordia and during expansion of the bifacial blade, suggesting additional roles for TmFIL in leaf development.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Hojas de la Planta/anatomía & histología , Hojas de la Planta/genética , Proteínas de Plantas/genética , Tropaeolum/embriología , Tropaeolum/genética , Clonación Molecular , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Filogenia , Hojas de la Planta/citología , Hojas de la Planta/ultraestructura , Brotes de la Planta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...