Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 44
1.
Nat Commun ; 14(1): 3074, 2023 05 27.
Article En | MEDLINE | ID: mdl-37244912

Paediatric rhabdomyosarcoma (RMS) is a soft tissue malignancy of mesenchymal origin that is thought to arise as a consequence of derailed myogenic differentiation. Despite intensive treatment regimens, the prognosis for high-risk patients remains dismal. The cellular differentiation states underlying RMS and how these relate to patient outcomes remain largely elusive. Here, we use single-cell mRNA sequencing to generate a transcriptomic atlas of RMS. Analysis of the RMS tumour niche reveals evidence of an immunosuppressive microenvironment. We also identify a putative interaction between NECTIN3 and TIGIT, specific to the more aggressive fusion-positive (FP) RMS subtype, as a potential cause of tumour-induced T-cell dysfunction. In malignant RMS cells, we define transcriptional programs reflective of normal myogenic differentiation and show that these cellular differentiation states are predictive of patient outcomes in both FP RMS and the less aggressive fusion-negative subtype. Our study reveals the potential of therapies targeting the immune microenvironment of RMS and suggests that assessing tumour differentiation states may enable a more refined risk stratification.


Rhabdomyosarcoma, Embryonal , Rhabdomyosarcoma , Child , Humans , Transcriptome , Cell Proliferation/genetics , Rhabdomyosarcoma/genetics , Rhabdomyosarcoma/pathology , Gene Expression Profiling , Cell Line, Tumor , Tumor Microenvironment/genetics
2.
EMBO Mol Med ; 14(10): e16001, 2022 10 10.
Article En | MEDLINE | ID: mdl-35916583

Rhabdomyosarcomas (RMS) are mesenchyme-derived tumors and the most common childhood soft tissue sarcomas. Treatment is intense, with a nevertheless poor prognosis for high-risk patients. Discovery of new therapies would benefit from additional preclinical models. Here, we describe the generation of a collection of 19 pediatric RMS tumor organoid (tumoroid) models (success rate of 41%) comprising all major subtypes. For aggressive tumors, tumoroid models can often be established within 4-8 weeks, indicating the feasibility of personalized drug screening. Molecular, genetic, and histological characterization show that the models closely resemble the original tumors, with genetic stability over extended culture periods of up to 6 months. Importantly, drug screening reflects established sensitivities and the models can be modified by CRISPR/Cas9 with TP53 knockout in an embryonal RMS model resulting in replicative stress drug sensitivity. Tumors of mesenchymal origin can therefore be used to generate organoid models, relevant for a variety of preclinical and clinical research questions.


Organoids , Rhabdomyosarcoma , Child , Humans , Organoids/pathology , Rhabdomyosarcoma/diagnosis , Rhabdomyosarcoma/pathology
3.
EMBO J ; 40(20): e107966, 2021 10 18.
Article En | MEDLINE | ID: mdl-34520050

Phosphatidylcholine (PC) is an abundant membrane lipid component in most eukaryotes, including yeast, and has been assigned multiple functions in addition to acting as building block of the lipid bilayer. Here, by isolating S. cerevisiae suppressor mutants that exhibit robust growth in the absence of PC, we show that PC essentiality is subject to cellular evolvability in yeast. The requirement for PC is suppressed by monosomy of chromosome XV or by a point mutation in the ACC1 gene encoding acetyl-CoA carboxylase. Although these two genetic adaptations rewire lipid biosynthesis in different ways, both decrease Acc1 activity, thereby reducing average acyl chain length. Consistently, soraphen A, a specific inhibitor of Acc1, rescues a yeast mutant with deficient PC synthesis. In the aneuploid suppressor, feedback inhibition of Acc1 through acyl-CoA produced by fatty acid synthase (FAS) results from upregulation of lipid synthesis. The results show that budding yeast regulates acyl chain length by fine-tuning the activities of Acc1 and FAS and indicate that PC evolved by benefitting the maintenance of membrane fluidity.


Acetyl-CoA Carboxylase/genetics , Fatty Acid Synthases/genetics , Lipid Bilayers/metabolism , Membrane Lipids/metabolism , Phosphatidylcholines/deficiency , Saccharomyces cerevisiae/metabolism , Acetyl-CoA Carboxylase/metabolism , Chromosomes, Fungal , Fatty Acid Synthases/metabolism , Feedback, Physiological , Gene Expression Regulation, Fungal , Lipid Bilayers/chemistry , Lipid Metabolism/genetics , Membrane Fluidity , Membrane Lipids/chemistry , Point Mutation , Saccharomyces cerevisiae/genetics
4.
J Vet Intern Med ; 32(4): 1343-1352, 2018 Jul.
Article En | MEDLINE | ID: mdl-29770973

BACKGROUND: In dogs with congenital portosystemic shunt (CPSS), recovery after surgical CPSS attenuation is difficult to predict. OBJECTIVES: Our aim was to build a model with plasma albumin concentration and mRNA expression levels of hepatic gene products as predictors of recovery from portosystemic shunting after surgery. ANIMALS: Seventy-three client-owned dogs referred for surgical attenuation of CPSS. METHODS: A prediction model was constructed using 2 case-control studies of recovered and nonrecovered dogs after surgical CPSS attenuation. In the 1st study, a dog-specific gene expression microarray analysis was used to compare mRNA expression in intraoperatively collected liver tissue between 23 recovered and 23 nonrecovered dogs. In the 2nd study, preoperative plasma albumin concentration and the expression of microarray-selected genes were confirmed by RT-qPCR in intraoperatively collected liver samples of 31 recovered and 31 nonrecovered dogs, including 35 dogs from the 1st study. RESULTS: In the 1st study, 43 genes were differently expressed in recovered and nonrecovered dogs. The mean preoperative plasma albumin concentration in recovered dogs was higher compared to nonrecovered dogs (23 and 19 g/L, respectively; P = .004). The best fitting prediction model in the 2nd study included preoperative plasma albumin concentration and intraoperative DHDH, ERLEC1, and LYSMD2 gene expression levels. CONCLUSION AND CLINICAL IMPORTANCE: A preclinical model was constructed using preoperative plasma albumin concentration and intraoperative hepatic mRNA expression of 3 genes that were unbiasedly selected from the genome to predict recovery from portosystemic shunting after shunt ligation. Further development is essential for clinical application.


Dog Diseases/congenital , Portal Vein/abnormalities , Vascular Malformations/veterinary , Animals , Case-Control Studies , Dog Diseases/genetics , Dog Diseases/surgery , Dogs/genetics , Dogs/surgery , Female , Gene Expression Profiling/veterinary , Genome-Wide Association Study/veterinary , Male , Models, Statistical , Portal Vein/surgery , Recovery of Function , Serum Albumin/analysis , Treatment Outcome , Vascular Malformations/genetics , Vascular Malformations/surgery
5.
Cancer Res ; 78(9): 2356-2369, 2018 05 01.
Article En | MEDLINE | ID: mdl-29440168

FOXO transcription factors are regulators of cellular homeostasis and putative tumor suppressors, yet the role of FOXO in cancer progression remains to be determined. The data on FOXO function, particularly for epithelial cancers, are fragmentary and come from studies that focused on isolated aspects of cancer. To clarify the role of FOXO in epithelial cancer progression, we characterized the effects of inducible FOXO activation and loss in a mouse model of metastatic invasive lobular carcinoma. Strikingly, either activation or loss of FOXO function suppressed tumor growth and metastasis. We show that the multitude of cellular processes critically affected by FOXO function include proliferation, survival, redox homeostasis, and PI3K signaling, all of which must be carefully balanced for tumor cells to thrive.Significance: FOXO proteins are not solely tumor suppressors, but also support tumor growth and metastasis by regulating a multitude of cellular processes essential for tumorigenesis. Cancer Res; 78(9); 2356-69. ©2018 AACR.


Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Forkhead Transcription Factors/metabolism , Animals , Breast Neoplasms/genetics , Breast Neoplasms/mortality , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Disease Models, Animal , Disease Progression , Female , Forkhead Transcription Factors/genetics , Humans , Mice , Mice, Knockout , Neoplasm Metastasis , Oxidation-Reduction , Signal Transduction , Tumor Burden
6.
J Orthop Res ; 36(1): 138-148, 2018 01.
Article En | MEDLINE | ID: mdl-28681971

The difference in the adult height of mammals, and hence in endochondral bone formation, is not yet fully understood and may serve to identify targets for bone and cartilage regeneration. In line with this hypothesis, the intra-species disparity between the adult height of Great Danes and Miniature Poodles was investigated at a transcriptional level. Microarray analysis of the growth plate of five Great Danes and five Miniature Poodles revealed 2,981 unique genes that were differentially expressed, including many genes with an unknown role in skeletal development. A signaling pathway impact analysis indicated activation of the cell cycle, extracellular matrix receptor interaction and the tight junction pathway, and inhibition of pathways associated with inflammation and the complement cascade. In additional validation steps, the gene expression profile of the separate growth plate zones for both dog breeds were determined. Given that the BMP signaling is known for its crucial role in skeletal development and fracture healing, and BMP-2 is used in orthopaedic and spine procedures for bone augmentation, further investigations concentrated on the BMP pathway.The canonical BMP-2 and BMP-6 signaling pathway was activated in the Great Danes compared to Miniature Poodles. In conclusion, investigating the differential expression of genes involved in endochondral bone formation in small and large breed dogs, could be a game changing strategy to provide new insights in growth plate development and identify new targets for bone and cartilage regeneration. © 2017 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res 36:138-148, 2018.


Gene Expression Profiling , Growth Plate/metabolism , Osteogenesis , Animals , Bone Morphogenetic Proteins/physiology , Dogs , Oligonucleotide Array Sequence Analysis , Signal Transduction/physiology
7.
J Immunol ; 198(10): 4062-4073, 2017 05 15.
Article En | MEDLINE | ID: mdl-28416598

Type I IFNs play critical roles in orchestrating the antiviral defense by inducing direct antiviral activities and shaping the adaptive immune response. Viruses have evolved numerous strategies to specifically interfere with IFN production or its downstream mediators, thereby allowing successful infection of the host to occur. The prototypic human gammaherpesvirus EBV, which is associated with infectious mononucleosis and malignant tumors, harbors many immune-evasion proteins that manipulate the adaptive and innate immune systems. In addition to proteins, the virus encodes >40 mature microRNAs for which the functions remain largely unknown. In this article, we identify EBV-encoded miR-BART16 as a novel viral immune-evasion factor that interferes with the type I IFN signaling pathway. miR-BART16 directly targets CREB-binding protein, a key transcriptional coactivator in IFN signaling, thereby inducing CREB-binding protein downregulation in EBV-transformed B cells and gastric carcinoma cells. miR-BART16 abrogates the production of IFN-stimulated genes in response to IFN-α stimulation and it inhibits the antiproliferative effect of IFN-α on latently infected BL cells. By obstructing the type I IFN-induced antiviral response, miR-BART16 provides a means to facilitate the establishment of latent EBV infection and enhance viral replication.


Herpesvirus 4, Human/genetics , Interferon Type I/metabolism , MicroRNAs/metabolism , RNA, Viral/metabolism , Signal Transduction , CREB-Binding Protein/metabolism , Cell Line , Herpesvirus 4, Human/immunology , Host-Pathogen Interactions , Humans , Immune Evasion , Immunity, Innate , Interferon Type I/immunology , MicroRNAs/genetics , RNA, Viral/genetics , Virus Replication
8.
PLoS One ; 12(2): e0172920, 2017.
Article En | MEDLINE | ID: mdl-28241084

In mammalian preimplantation development, pluripotent cells are set aside from cells that contribute to extra-embryonic tissues. Although the pluripotent cell population of mouse and human embryos can be cultured as embryonic stem cells, little is known about the pathways involved in formation of a bovine pluripotent cell population, nor how to maintain these cells in vitro. The objective of this study was to determine the transcriptomic profile related to bovine pluripotency. Therefore, in vitro derived embryos were cultured in various culture media that recently have been reported capable of maintaining the naïve pluripotent state of human embryonic cells. Gene expression profiles of embryos cultured in these media were compared using microarray analysis and quantitative RT-PCR. Compared to standard culture conditions, embryo culture in 'naïve' media reduced mRNA expression levels of the key pluripotency markers NANOG and POU5F1. A relatively high percentage of genes with differential expression levels were located on the X-chromosome. In addition, reduced XIST expression was detected in embryos cultured in naïve media and female embryos contained fewer cells with H3K27me3 foci, indicating a delay in X-chromosome inactivation. Whole embryos cultured in one of the media, 5iLA, could be maintained until 23 days post fertilization. Together these data indicate that 'naïve' conditions do not lead to altered expression of known genes involved in pluripotency. Interestingly, X-chromosome inactivation and development of bovine embryos were dependent on the culture conditions.


Embryo Culture Techniques , Embryonic Development , Embryonic Stem Cells/cytology , Pluripotent Stem Cells/cytology , Animals , Blastocyst/cytology , Cattle , Culture Media/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental , Genes, Homeobox , Humans , Jumonji Domain-Containing Histone Demethylases/metabolism , Mice , Nanog Homeobox Protein/metabolism , Octamer Transcription Factor-3/metabolism , Oligonucleotide Array Sequence Analysis , RNA, Messenger/metabolism , Transcriptome
9.
Proc Natl Acad Sci U S A ; 113(45): E7087-E7096, 2016 Nov 08.
Article En | MEDLINE | ID: mdl-27791111

The forkhead transcription factor FoxO6 is prominently expressed during development of the murine neocortex. However, its function in cortical development is as yet unknown. We now demonstrate that cortical development is altered in FoxO6+/- and FoxO6-/- mice, showing migrating neurons halted in the intermediate zone. Using a FoxO6-directed siRNA approach, we substantiate the requirement of FoxO6 for a correct radial migration in the developing neocortex. Subsequent genome-wide transcriptome analysis reveals altered expression of genes involved in cell adhesion, axon guidance, and gliogenesis upon silencing of FoxO6 We then show that FoxO6 binds to DAF-16-binding elements in the Plexin A4 (Plxna4) promoter region and affects Plxna4 expression. Finally, ectopic Plxna4 expression restores radial migration in FoxO6+/- and siRNA-mediated knockdown models. In conclusion, the presented data provide insights into the molecular mechanisms whereby transcriptional programs drive cortical development.

10.
Eur J Neurosci ; 44(11): 2950-2957, 2016 12.
Article En | MEDLINE | ID: mdl-27690330

Febrile seizures (FS) are the most common seizure type in children. Recurrent FS are a risk factor for developing temporal lobe epilepsy later in life and are known to have a strong genetic component. Experimental FS (eFS) can be elicited in mice by warm-air induced hyperthermia. We used this model to screen the chromosome substitution strain (CSS) panel derived from C57BL/6J and A/J for FS susceptibility and identified C57BL/6J-Chr2A /NaJ (CSS2), as the strain with the strongest FS susceptibility phenotype. The aim of this study was to map FS susceptibility loci and select candidate genes on mouse chromosome 2. We generated an F2 population by intercrossing the hybrids (F1 ) that were derived from CSS2 and C57BL/6J mice. All CSS2-F2 individuals were genotyped and phenotyped for eFS susceptibility, and QTL analysis was performed. Candidate gene selection was based on bioinformatics analyses and differential brain expression between CSS2 and C57BL/6J strains determined by microarray analysis. Genetic mapping of the eFS susceptibility trait identified two significant loci: FS-QTL2a (LOD-score 3.6) and FS-QTL2b (LOD-score 6.2). FS-QTL2a contained 44 genes expressed in the brain at post natal day 14. Four of these (Arl6ip6, Cytip, Fmnl2 Ifih1) contained a non-synonymous SNP comparing CSS2 and C57BL/6J, six genes (March7, Nr4a2, Gpd2, Grb14, Scn1a, Scn3a) were differentially expressed between these strains. A region within FS-QTL2a is homologous to the human FEB3 locus. The fact that we identify mouse FS-QTL2a with high FEB3 homology is strong support for the validity of the eFS mouse model to study genetics of human FS.


NAV1.1 Voltage-Gated Sodium Channel/genetics , NAV1.3 Voltage-Gated Sodium Channel/genetics , Quantitative Trait Loci , Seizures, Febrile/genetics , Animals , Chromosomes/genetics , Female , Humans , Male , Mice , Mice, Inbred C57BL , Polymorphism, Single Nucleotide , Sequence Homology
11.
Sci Rep ; 6: 19411, 2016 Jan 22.
Article En | MEDLINE | ID: mdl-26797113

The primary limiting factor for effective IVF treatment is successful embryo implantation. Recurrent implantation failure (RIF) is a condition whereby couples fail to achieve pregnancy despite consecutive embryo transfers. Here we describe the collection of gene expression profiles from mid-luteal phase endometrial biopsies (n = 115) from women experiencing RIF and healthy controls. Using a signature discovery set (n = 81) we identify a signature containing 303 genes predictive of RIF. Independent validation in 34 samples shows that the gene signature predicts RIF with 100% positive predictive value (PPV). The strength of the RIF associated expression signature also stratifies RIF patients into distinct groups with different subsequent implantation success rates. Exploration of the expression changes suggests that RIF is primarily associated with reduced cellular proliferation. The gene signature will be of value in counselling and guiding further treatment of women who fail to conceive upon IVF and suggests new avenues for developing intervention.


Embryo Implantation/genetics , Endometrium/metabolism , Fertilization in Vitro , Gene Expression Profiling , Infertility, Female/genetics , Adult , Biopsy , Endometrium/pathology , Female , Gene Expression Regulation , Humans , Pregnancy , Recurrence , Reproducibility of Results
12.
Nucleic Acids Res ; 44(8): 3549-66, 2016 05 05.
Article En | MEDLINE | ID: mdl-26681691

In this study, we explored the existence of a transcriptional network co-regulated by E2F7 and HIF1α, as we show that expression of E2F7, like HIF1α, is induced in hypoxia, and because of the previously reported ability of E2F7 to interact with HIF1α. Our genome-wide analysis uncovers a transcriptional network that is directly controlled by HIF1α and E2F7, and demonstrates both stimulatory and repressive functions of the HIF1α -E2F7 complex. Among this network we reveal Neuropilin 1 (NRP1) as a HIF1α-E2F7 repressed gene. By performing in vitro and in vivo reporter assays we demonstrate that the HIF1α-E2F7 mediated NRP1 repression depends on a 41 base pairs 'E2F-binding site hub', providing a molecular mechanism for a previously unanticipated role for HIF1α in transcriptional repression. To explore the biological significance of this regulation we performed in situ hybridizations and observed enhanced nrp1a expression in spinal motorneurons (MN) of zebrafish embryos, upon morpholino-inhibition of e2f7/8 or hif1α Consistent with the chemo-repellent role of nrp1a, morpholino-inhibition of e2f7/8 or hif1α caused MN truncations, which was rescued in TALEN-induced nrp1a(hu10012) mutants, and phenocopied in e2f7/8 mutant zebrafish. Therefore, we conclude that repression of NRP1 by the HIF1α-E2F7 complex regulates MN axon guidance in vivo.


Axon Guidance/genetics , E2F7 Transcription Factor/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Motor Neurons/metabolism , Neuropilin-1/genetics , Zebrafish/genetics , Animals , Binding Sites , Cell Hypoxia/genetics , Cell Line, Tumor , E2F7 Transcription Factor/metabolism , Genome-Wide Association Study , HeLa Cells , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , In Situ Hybridization , Morpholinos/genetics , Neuropilin-1/metabolism , RNA Interference , RNA, Small Interfering/genetics , Transcription, Genetic/genetics , Zebrafish/embryology
13.
PLoS One ; 10(12): e0145247, 2015.
Article En | MEDLINE | ID: mdl-26684451

Febrile seizures are the most prevalent type of seizures among children up to 5 years of age (2-4% of Western-European children). Complex febrile seizures are associated with an increased risk to develop temporal lobe epilepsy. To investigate short- and long-term effects of experimental febrile seizures (eFS), we induced eFS in highly febrile convulsion-susceptible C57BL/6J mice at post-natal day 10 by exposure to hyperthermia (HT) and compared them to normotherm-exposed (NT) mice. We detected structural re-organization in the hippocampus 14 days after eFS. To identify molecular candidates, which entrain this structural re-organization, we investigated temporal changes in mRNA expression profiles eFS 1 hour to 56 days after eFS. We identified 931 regulated genes and profiled several candidates using in situ hybridization and histology at 3 and 14 days after eFS. This is the first study to report genome-wide transcriptome analysis after eFS in mice. We identify temporal regulation of multiple processes, such as stress-, immune- and inflammatory responses, glia activation, glutamate-glutamine cycle and myelination. Identification of the short- and long-term changes after eFS is important to elucidate the mechanisms contributing to epileptogenesis.


CA1 Region, Hippocampal/metabolism , CA3 Region, Hippocampal/metabolism , Seizures, Febrile/metabolism , Transcriptome , 2',3'-Cyclic Nucleotide 3'-Phosphodiesterase/genetics , 2',3'-Cyclic Nucleotide 3'-Phosphodiesterase/metabolism , Animals , CA1 Region, Hippocampal/pathology , CA3 Region, Hippocampal/pathology , Epilepsy, Temporal Lobe/metabolism , Epilepsy, Temporal Lobe/pathology , Female , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , Heat-Shock Response , Male , Mice, Inbred C57BL , Neurofilament Proteins/genetics , Neurofilament Proteins/metabolism , Seizures, Febrile/pathology , Up-Regulation
14.
BMC Biol ; 13: 112, 2015 Dec 23.
Article En | MEDLINE | ID: mdl-26700642

BACKGROUND: Genetic interactions, or non-additive effects between genes, play a crucial role in many cellular processes and disease. Which mechanisms underlie these genetic interactions has hardly been characterized. Understanding the molecular basis of genetic interactions is crucial in deciphering pathway organization and understanding the relationship between genotype, phenotype and disease. RESULTS: To investigate the nature of genetic interactions between gene-specific transcription factors (GSTFs) in Saccharomyces cerevisiae, we systematically analyzed 72 GSTF pairs by gene expression profiling double and single deletion mutants. These pairs were selected through previously published growth-based genetic interactions as well as through similarity in DNA binding properties. The result is a high-resolution atlas of gene expression-based genetic interactions that provides systems-level insight into GSTF epistasis. The atlas confirms known genetic interactions and exposes new ones. Importantly, the data can be used to investigate mechanisms that underlie individual genetic interactions. Two molecular mechanisms are proposed, "buffering by induced dependency" and "alleviation by derepression". CONCLUSIONS: These mechanisms indicate how negative genetic interactions can occur between seemingly unrelated parallel pathways and how positive genetic interactions can indirectly expose parallel rather than same-pathway relationships. The focus on GSTFs is important for understanding the transcription regulatory network of yeast as it uncovers details behind many redundancy relationships, some of which are completely new. In addition, the study provides general insight into the complex nature of epistasis and proposes mechanistic models for genetic interactions, the majority of which do not fall into easily recognizable within- or between-pathway relationships.


Epigenesis, Genetic , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Transcription Factors/genetics , Gene Expression Profiling , Gene Library , Gene Ontology , Molecular Sequence Annotation , Mutation , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/metabolism
15.
Biochem J ; 469(2): 289-98, 2015 Jul 15.
Article En | MEDLINE | ID: mdl-25990325

Activity of FOXO (forkhead box O) transcription factors is inhibited by growth factor-PI3K (phosphoinositide 3-kinase)-PKB (protein kinase B)/Akt signalling to control a variety of cellular processes including cell cycle progression. Through comparative analysis of a number of microarray datasets we identified a set of genes commonly regulated by FOXO proteins and PI3K-PKB/Akt, which includes CTDSP2 (C-terminal domain small phosphatase 2). We validated CTDSP2 as a genuine FOXO target gene and show that ectopic CTDSP2 can induce cell cycle arrest. We analysed transcriptional regulation after CTDSP2 expression and identified extensive regulation of genes involved in cell cycle progression, which depends on the phosphatase activity of CTDSP2. The most notably regulated gene is the CDK (cyclin-dependent kinase) inhibitor p21(Cip1/Waf1) and in the present study we show that p21(Cip1/Waf1) is partially responsible for the cell cycle arrest through decreasing cyclin-CDK activity. Our data suggest that CTDSP2 induces p21(Cip1/Waf1) through increasing the activity of Ras. As has been described previously, Ras induces p21(Cip1/Waf1) through p53-dependent and p53-independent pathways and indeed both p53 and MEK inhibition can mitigate the CTDSP2-induced p21(Cip1/Waf1) mRNA up-regulation. In support of Ras activation by CTDSP2, depletion of endogenous CTDSP2 results in reduced Ras activity and thus CTDSP2 seems to be part of a larger set of genes regulated by FOXO proteins, which increase growth factor signalling upon FOXO activation.


Cell Cycle Checkpoints/physiology , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Forkhead Transcription Factors/metabolism , Nuclear Proteins/metabolism , Phosphoprotein Phosphatases/metabolism , ras Proteins/metabolism , Animals , Cyclin-Dependent Kinase Inhibitor p21/genetics , Forkhead Transcription Factors/genetics , Gene Expression Regulation/physiology , HEK293 Cells , Humans , Mice , Mice, Knockout , NIH 3T3 Cells , Nuclear Proteins/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphoprotein Phosphatases/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Transcription, Genetic/physiology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , ras Proteins/genetics
16.
BMC Genomics ; 16: 277, 2015 Apr 10.
Article En | MEDLINE | ID: mdl-25888366

BACKGROUND: Genes and signalling pathways involved in pluripotency have been studied extensively in mouse and human pre-implantation embryos and embryonic stem (ES) cells. The unsuccessful attempts to generate ES cell lines from other species including cattle suggests that other genes and pathways are involved in maintaining pluripotency in these species. To investigate which genes are involved in bovine pluripotency, expression profiles were generated from morula, blastocyst, trophectoderm and inner cell mass (ICM) samples using microarray analysis. As MAPK inhibition can increase the NANOG/GATA6 ratio in the inner cell mass, additionally blastocysts were cultured in the presence of a MAPK inhibitor and changes in gene expression in the inner cell mass were analysed. RESULTS: Between morula and blastocyst 3,774 genes were differentially expressed and the largest differences were found in blastocyst up-regulated genes. Gene ontology (GO) analysis shows lipid metabolic process as the term most enriched with genes expressed at higher levels in blastocysts. Genes with higher expression levels in morulae were enriched in the RNA processing GO term. Of the 497 differentially expressed genes comparing ICM and TE, the expression of NANOG, SOX2 and POU5F1 was increased in the ICM confirming their evolutionary preserved role in pluripotency. Several genes implicated to be involved in differentiation or fate determination were also expressed at higher levels in the ICM. Genes expressed at higher levels in the ICM were enriched in the RNA splicing and regulation of gene expression GO term. Although NANOG expression was elevated upon MAPK inhibition, SOX2 and POU5F1 expression showed little increase. Expression of other genes in the MAPK pathway including DUSP4 and SPRY4, or influenced by MAPK inhibition such as IFNT, was down-regulated. CONCLUSION: The data obtained from the microarray studies provide further insight in gene expression during bovine embryonic development. They show an expression profile in pluripotent cells that indicates a pluripotent, epiblast-like state. The inability to culture ICM cells as stem cells in the presence of an inhibitor of MAPK activity together with the reported data indicates that MAPK inhibition alone is not sufficient to maintain a pluripotent character in bovine cells.


Blastocyst Inner Cell Mass/metabolism , Cattle/embryology , Gene Expression Regulation, Developmental , Mitogen-Activated Protein Kinase Kinases/metabolism , Morula/metabolism , RNA, Messenger/metabolism , Animals , Benzamides/pharmacology , Blastocyst Inner Cell Mass/drug effects , Cattle/genetics , Cattle/metabolism , Cells, Cultured , Diphenylamine/analogs & derivatives , Diphenylamine/pharmacology , Embryo Culture Techniques , Gene Expression Regulation, Developmental/drug effects , Morula/drug effects , Pluripotent Stem Cells/metabolism , Protein Kinase Inhibitors/pharmacology
17.
PLoS Biol ; 12(8): e1001935, 2014 Aug.
Article En | MEDLINE | ID: mdl-25157590

Adaptive evolution is generally assumed to progress through the accumulation of beneficial mutations. However, as deleterious mutations are common in natural populations, they generate a strong selection pressure to mitigate their detrimental effects through compensatory genetic changes. This process can potentially influence directions of adaptive evolution by enabling evolutionary routes that are otherwise inaccessible. Therefore, the extent to which compensatory mutations shape genomic evolution is of central importance. Here, we studied the capacity of the baker's yeast genome to compensate the complete loss of genes during evolution, and explored the long-term consequences of this process. We initiated laboratory evolutionary experiments with over 180 haploid baker's yeast genotypes, all of which initially displayed slow growth owing to the deletion of a single gene. Compensatory evolution following gene loss was rapid and pervasive: 68% of the genotypes reached near wild-type fitness through accumulation of adaptive mutations elsewhere in the genome. As compensatory mutations have associated fitness costs, genotypes with especially low fitnesses were more likely to be subjects of compensatory evolution. Genomic analysis revealed that as compensatory mutations were generally specific to the functional defect incurred, convergent evolution at the molecular level was extremely rare. Moreover, the majority of the gene expression changes due to gene deletion remained unrestored. Accordingly, compensatory evolution promoted genomic divergence of parallel evolving populations. However, these different evolutionary outcomes are not phenotypically equivalent, as they generated diverse growth phenotypes across environments. Taken together, these results indicate that gene loss initiates adaptive genomic changes that rapidly restores fitness, but this process has substantial pleiotropic effects on cellular physiology and evolvability upon environmental change. Our work also implies that gene content variation across species could be partly due to the action of compensatory evolution rather than the passive loss of genes.


Evolution, Molecular , Genome, Fungal/genetics , Saccharomyces cerevisiae/genetics , Adaptation, Biological/genetics , Environment , Epistasis, Genetic , Gene Deletion , Gene Expression Regulation, Fungal , Genetic Fitness , Genetic Pleiotropy , Genetic Variation , Phenotype , Transcriptome/genetics
18.
PLoS One ; 9(6): e98258, 2014.
Article En | MEDLINE | ID: mdl-24886914

Examination of gene functions in specific tumor types improves insight in tumorigenesis and helps design better treatments. Due to the rarity of histiocytic/dendritic cell sarcoma in humans, it is difficult to accrue such knowledge. Therefore, comparative research of these cancers in predisposed dog breeds, such as the Flatcoated retriever, can be of value. Histiocytic sarcoma in the dog can be grouped into a soft tissue- and visceral form. The soft tissue form at first is localized, while the visceral form progresses more quickly to a terminal state, which might be related to variations in gene expression. Microarray analyses were performed on fresh-frozen tissue from Flatcoated retrievers with either soft tissue- or visceral histiocytic sarcoma. Expression differences of ten most significantly differentially expressed genes were validated with quantitative real-time PCR (q PCR) analyses. Q PCR analyses confirmed the significantly aberrant expression of three of the selected genes: C6 was up-regulated; CLEC12A and CCL5 were down-regulated in the visceral histiocytic sarcoma compared to the soft tissue form. The findings of our study indicate that these two forms of histiocytic sarcoma in the dog display a variation in gene expression and warrant analysis of functional changes in the expression of those genes in these rare sarcomas in man.


Dog Diseases/genetics , Genetic Predisposition to Disease , Histiocytic Sarcoma/veterinary , Animals , Base Sequence , DNA Primers , Dogs , Gene Expression Profiling , Histiocytic Sarcoma/genetics , Real-Time Polymerase Chain Reaction
19.
PLoS One ; 9(6): e100077, 2014.
Article En | MEDLINE | ID: mdl-24945279

The detoxification of ammonia occurs mainly through conversion of ammonia to urea in the liver via the urea cycle and glutamine synthesis. Congenital portosystemic shunts (CPSS) in dogs cause hyperammonemia eventually leading to hepatic encephalopathy. In this study, the gene expression of urea cycle enzymes (carbamoylphosphate synthetase (CPS1), ornithine carbamoyltransferase (OTC), argininosuccinate synthetase (ASS1), argininosuccinate lyase (ASL), and arginase (ARG1)), N-acetylglutamate synthase (NAGS), Glutamate dehydrogenase (GLUD1), and glutamate-ammonia ligase (GLUL) was evaluated in dogs with CPSS before and after surgical closure of the shunt. Additionally, immunohistochemistry was performed on urea cycle enzymes and GLUL on liver samples of healthy dogs and dogs with CPSS to investigate a possible zonal distribution of these enzymes within the liver lobule and to investigate possible differences in distribution in dogs with CPSS compared to healthy dogs. Furthermore, the effect of increasing ammonia concentrations on the expression of the urea cycle enzymes was investigated in primary hepatocytes in vitro. Gene-expression of CPS1, OTC, ASL, GLUD1 and NAGS was down regulated in dogs with CPSS and did not normalize after surgical closure of the shunt. In all dogs GLUL distribution was localized pericentrally. CPS1, OTC and ASS1 were localized periportally in healthy dogs, whereas in CPSS dogs, these enzymes lacked a clear zonal distribution. In primary hepatocytes higher ammonia concentrations induced mRNA levels of CPS1. We hypothesize that the reduction in expression of urea cycle enzymes, NAGS and GLUD1 as well as the alterations in zonal distribution in dogs with CPSS may be caused by a developmental arrest of these enzymes during the embryonic or early postnatal phase.


Ammonia/metabolism , Metabolic Networks and Pathways , Portal Vein/abnormalities , Urea/metabolism , Vascular Malformations/enzymology , Vascular Malformations/veterinary , Ammonia/pharmacology , Ammonium Chloride/pharmacology , Animals , Cells, Cultured , Dogs , Gene Expression Regulation/drug effects , Glutamate-Ammonia Ligase/metabolism , Hepatocytes/drug effects , Hepatocytes/enzymology , Immunohistochemistry , Liver/drug effects , Liver/enzymology , Oligonucleotide Array Sequence Analysis , Portal Vein/enzymology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/genetics , Vascular Malformations/genetics
20.
Mol Syst Biol ; 10: 732, 2014 Jun 21.
Article En | MEDLINE | ID: mdl-24952590

Growth condition perturbation or gene function disruption are commonly used strategies to study cellular systems. Although it is widely appreciated that such experiments may involve indirect effects, these frequently remain uncharacterized. Here, analysis of functionally unrelated Saccharyomyces cerevisiae deletion strains reveals a common gene expression signature. One property shared by these strains is slower growth, with increased presence of the signature in more slowly growing strains. The slow growth signature is highly similar to the environmental stress response (ESR), an expression response common to diverse environmental perturbations. Both environmental and genetic perturbations result in growth rate changes. These are accompanied by a change in the distribution of cells over different cell cycle phases. Rather than representing a direct expression response in single cells, both the slow growth signature and ESR mainly reflect a redistribution of cells over different cell cycle phases, primarily characterized by an increase in the G1 population. The findings have implications for any study of perturbation that is accompanied by growth rate changes. Strategies to counter these effects are presented and discussed.


Gene Deletion , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/genetics , Cell Cycle , Culture Media , Databases, Genetic , Gene Expression Profiling , Gene Expression Regulation, Fungal , Genes, Fungal , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae/cytology , Stress, Physiological
...