Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 264
1.
Article En | MEDLINE | ID: mdl-38651618

Background: Hepatitis E virus (HEV) is transmitted by the fecal route, usually through contaminated water in humans and/or infected animals, especially pigs. The objective of this study was to evaluate the level of anti-HEV antibodies in a panel of pig sera and to identify HEV in pig feces in farms. Methodology: The presence of HEV antibodies was tested by an in-house ELISA and a commercial ELISA IDvet. HEV genome was assessed by nested RT-PCR, and then, genotype was identified by sequencing (MinION Nanopore technology). Results: In 2017-2019, the 43% seroprevalence found in Forest Guinea was significantly higher than the 7% found in the Lower region (p < 0.01). Presence of HEV genotype 3c was demonstrated during a secondary study in the Lower region (Conakry) in 2022. Conclusion: The presence of HEV-3c in pigs calls for an evaluation of seroprevalence in human populations and for a HEV genotype human circulation check. Contribution Heading: This study is the first report, to our knowledge, of seroprevalence and characterization of HEV infection in pigs in Guinea.

2.
Viruses ; 16(4)2024 Apr 03.
Article En | MEDLINE | ID: mdl-38675900

Hepatitis E virus (HEV) is the main cause of acute hepatitis in humans worldwide and is responsible for a large number of outbreaks especially in Africa. Human infections are mainly caused by genotypes 1 and 2 of the genus Paslahepevirus, which are exclusively associated with humans. In contrast, viruses of genotypes 3 and 4 are zoonotic and have their main reservoir in domestic and wild pigs, from which they can be transmitted to humans primarily through the consumption of meat products. Both genotypes 3 and 4 are widespread in Europe, Asia, and North America and lead to sporadic cases of hepatitis E. However, there is little information available on the prevalence of these genotypes and possible transmission routes from animal reservoirs to humans in African countries. We therefore analysed 1086 pig sera collected in 2016/2017 in four districts in Sierra Leone for antibodies against HEV using a newly designed in-house ELISA. In addition, the samples were also analysed for HEV RNA by quantitative real-time RT-PCR. The overall seroprevalence in Sierra Leone was low with only 44 positive sera and a prevalence of 4.0%. Two serum pools were RT-PCR-positive and recovered partial sequences clustered into the genotype 3 (HEV-3) of the order Paslahepevirus, species Paslahepevirus balayani. The results are the first evidence of HEV-3 infection in pigs from Sierra Leone and demonstrate a low circulation of the virus in these animals to date. Further studies should include an examination of humans, especially those with close contact with pigs and porcine products, as well as environmental sampling to evaluate public health effects within the framework of a One Health approach.


Genotype , Hepatitis E virus , Hepatitis E , Phylogeny , Swine Diseases , Animals , Hepatitis E/epidemiology , Hepatitis E/veterinary , Hepatitis E/virology , Hepatitis E virus/genetics , Hepatitis E virus/classification , Hepatitis E virus/isolation & purification , Hepatitis E virus/immunology , Seroepidemiologic Studies , Swine , Swine Diseases/virology , Swine Diseases/epidemiology , Sierra Leone/epidemiology , Hepatitis Antibodies/blood , RNA, Viral/genetics , Sus scrofa/virology , Humans
3.
Emerg Infect Dis ; 30(5): 984-990, 2024 May.
Article En | MEDLINE | ID: mdl-38666621

We conducted a cross-sectional study in wild boar and extensively managed Iberian pig populations in a hotspot area of Crimean-Congo hemorrhagic fever virus (CCHFV) in Spain. We tested for antibodies against CCHFV by using 2 ELISAs in parallel. We assessed the presence of CCHFV RNA by means of reverse transcription quantitative PCR protocol, which detects all genotypes. A total of 113 (21.8%) of 518 suids sampled showed antibodies against CCHFV by ELISA. By species, 106 (39.7%) of 267 wild boars and 7 (2.8%) of 251 Iberian pigs analyzed were seropositive. Of the 231 Iberian pigs and 231 wild boars analyzed, none tested positive for CCHFV RNA. These findings indicate high CCHFV exposure in wild boar populations in endemic areas and confirm the susceptibility of extensively reared pigs to CCHFV, even though they may only play a limited role in the enzootic cycle.


Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Swine Diseases , Animals , Hemorrhagic Fever Virus, Crimean-Congo/immunology , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Hemorrhagic Fever Virus, Crimean-Congo/isolation & purification , Spain/epidemiology , Hemorrhagic Fever, Crimean/epidemiology , Hemorrhagic Fever, Crimean/veterinary , Hemorrhagic Fever, Crimean/virology , Swine , Cross-Sectional Studies , Swine Diseases/virology , Swine Diseases/epidemiology , Antibodies, Viral/blood , Seroepidemiologic Studies , Sus scrofa/virology , RNA, Viral
4.
Virulence ; 15(1): 2329447, 2024 Dec.
Article En | MEDLINE | ID: mdl-38548679

MicroRNAs (miRNAs) are small non-coding RNAs that regulate the post-transcriptional expression of target genes. Virus-encoded miRNAs play an important role in the replication of viruses, modulate gene expression in both the virus and host, and affect their persistence and immune evasion in hosts. This renders viral miRNAs as potential targets for therapeutic applications, especially against pathogenic viruses that infect humans and animals. Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic RNA virus that causes severe disease in both humans and livestock. High mortality among newborn lambs and abortion storms are key characteristics of an RVF outbreak. To date, limited information is available on RVFV-derived miRNAs. In this study, computational methods were used to analyse the RVFV genome for putative pre-miRNA genes, which were then analysed for the presence of mature miRNAs. We detected 19 RVFV-encoded miRNAs and identified their potential mRNAs targets in sheep (Ovis aries), the most susceptible host. The identification of significantly enriched O. aries genes in association with RVFV miRNAs will help elucidate the molecular mechanisms underlying RVFV pathogenesis and potentially uncover novel drug targets for RVFV.


Culicidae , MicroRNAs , Rift Valley Fever , Rift Valley fever virus , Humans , Pregnancy , Female , Animals , Sheep/genetics , Rift Valley fever virus/genetics , Rift Valley Fever/genetics , Rift Valley Fever/epidemiology , Culicidae/genetics , Disease Outbreaks , MicroRNAs/genetics
5.
Emerg Infect Dis ; 30(4): 681-690, 2024 Apr.
Article En | MEDLINE | ID: mdl-38526081

Although pigs are naturally susceptible to Reston virus and experimentally to Ebola virus (EBOV), their role in Orthoebolavirus ecology remains unknown. We tested 888 serum samples collected from pigs in Guinea during 2017-2019 (between the 2013-16 epidemic and its resurgence in 2021) by indirect ELISA against the EBOV nucleoprotein. We identified 2 hotspots of possible pig exposure by IgG titer levels: the northern coast had 48.7% of positive serum samples (37/76), and Forest Guinea, bordering Sierra Leone and Liberia, where the virus emerged and reemerged, had 50% of positive serum samples (98/196). The multitarget Luminex approach confirms ELISA results against Ebola nucleoprotein and highlights cross-reactivities to glycoprotein of EBOV, Reston virus, and Bundibugyo virus. Those results are consistent with previous observations of the circulation of Orthoebolavirus species in pig farming regions in Sierra Leone and Ghana, suggesting potential risk for Ebola virus disease in humans, especially in Forest Guinea.


Ebolavirus , Hemorrhagic Fever, Ebola , Humans , Swine , Animals , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/veterinary , Guinea/epidemiology , Sus scrofa , Sierra Leone/epidemiology , Nucleoproteins/genetics
6.
Article En | MEDLINE | ID: mdl-38457645

Crimean-Congo hemorrhagic fever (CCHF) is a zoonotic tick-borne disease, caused by an arbovirus of the genus Orthonairovirus and the family Nairoviridae. Crimean-Congo hemorrhagic fever virus (CCHFV) is widespread in several regions of the world. While the virus is not pathogenic to all susceptible livestock and wild mammals, it can lead to severe hemorrhagic fever in humans. In this review, we compiled published data on CCHFV infections in humans, animals, and ticks in Tunisia. Based on that, we discussed the epidemiology and the distribution patterns of CCHFV infections highlighting the risk factors for this virus in the country. CCHF infection prevalence in humans was estimated to 2.76% (5/181) and 5% (2/38) in Tunisian febrile patients and Tunisian slaughterhouse workers, respectively. Concurrently, seroprevalence in domestic ungulates (sheep, goats, cattle, and dromedaries) ranged from zero to 89.7%, and only one Hyalomma impeltatum tick specimen collected from dromedaries in southern Tunisian was positive for CCHFV by reverse transcriptase-polymerase chain reaction (0.6%; 1/165). As Tunisian studies on CCHFV are geographically scattered and limited due to very small sample sizes, further studies are needed to improve the knowledge on the epidemiology of CCHF in Tunisia.

7.
J Virol Methods ; 326: 114915, 2024 May.
Article En | MEDLINE | ID: mdl-38479590

Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne zoonotic orthonairovirus of public health concern and widespread geographic distribution. Several animal species are known to seroconvert after infection with CCHFV without showing clinical symptoms. The commercial availability of a multi-species ELISA has led to an increase in recent serosurveillance studies as well as in the range of species reported to be exposed to CCHFV in the field, including wild boar (Sus scrofa). However, development and validation of confirmatory serological tests for swine based on different CCHFV antigens or test principles are hampered by the lack of defined control sera from infected and non-infected animals. For the detection of anti-CCHFV antibodies in swine, we established a swine-specific in-house ELISA using a panel of swine sera from CCHFV-free regions and regions with reported CCHFV circulation. We initially screened more than 700 serum samples from wild boar and domestic pigs and observed a correlation of ≃67% between the commercial and the in-house test. From these sera, we selected a panel of 60 samples that were further analyzed in a newly established indirect immunofluorescence assay (iIFA) and virus neutralization test. ELISA-non-reactive samples tested negative. Interestingly, only a subset of samples reactive in both ELISA and iIFA displayed CCHFV-neutralizing antibodies. The observed partial discrepancy between the tests may be explained by different test sensitivities, antibody cross-reactivities or suggests that the immune response to CCHFV in swine is not necessarily associated with eliciting neutralizing antibodies. Overall, this study highlights that meaningful CCHFV serology in swine, and possibly other species, should involve the performance of multiple tests and careful interpretation of the results.


Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Animals , Swine , Hemorrhagic Fever, Crimean/diagnosis , Hemorrhagic Fever, Crimean/veterinary , Antibodies, Neutralizing , Serologic Tests , Sus scrofa , Antibodies, Viral
8.
Viruses ; 16(1)2024 Jan 03.
Article En | MEDLINE | ID: mdl-38257779

Usutu virus (USUV) is a flavivirus transmitted to avian species through mosquito bites that causes mass mortalities in wild and captive bird populations. However, several cases of positive dead birds have been recorded during the winter, a vector-free period. To explain how USUV "overwinters", the main hypothesis is bird-to-bird transmission, as shown for the closely related West Nile virus. To address this question, we experimentally challenged canaries with intranasal inoculation of USUV, which led to systemic dissemination of the virus, provided the inoculated dose was sufficient (>102 TCID50). We also highlighted the oronasal excretion of infectious viral particles in infected birds. Next, we co-housed infected birds with naive sentinels, to determine whether onward transmission could be reproduced experimentally. We failed to detect such transmission but demonstrated horizontal transmission by transferring sputum from an infected to a naive canary. In addition, we evaluated the cellular tropism of respiratory mucosa to USUV in vitro using a canary tracheal explant and observed only limited evidence of viral replication. Further research is then needed to assess if and how comparable bird-to-bird transmission occurs in the wild.


Body Fluids , Flavivirus , West Nile virus , Animals , Canaries , Respiratory Mucosa
9.
J Med Primatol ; 53(1): e12687, 2024 Feb.
Article En | MEDLINE | ID: mdl-38083993

We tested for Rift Valley fever virus (RVFV) from at least 15 species of non-human primates. RVFV IgG/IgM antibodies were detected in 3.7% (2 out of 53) of chimpanzees (Pan troglodytes) and in 1.4% (1 out of 72) of unidentified non-human primate species. This study was the first investigation of RVFV in monkeys in Cameroon.


Rift Valley Fever , Rift Valley fever virus , Animals , Rift Valley Fever/diagnosis , Cameroon , Antibodies, Viral , Primates , Seroepidemiologic Studies
10.
J Med Chem ; 67(1): 289-321, 2024 Jan 11.
Article En | MEDLINE | ID: mdl-38127656

The synthesis of a library of halogenated rocaglate derivatives belonging to the flavagline class of natural products, of which silvestrol is the most prominent example, is reported. Their antiviral activity and cytotoxicity profile against a wide range of pathogenic viruses, including hepatitis E, Chikungunya, Rift Valley Fever virus and SARS-CoV-2, were determined. The incorporation of halogen substituents at positions 4', 6 and 8 was shown to have a significant effect on the antiviral activity of rocaglates, some of which even showed enhanced activity compared to CR-31-B and silvestrol.


Chikungunya Fever , Hepatitis E virus , Viruses , Animals , Antiviral Agents/pharmacology
12.
Prev Vet Med ; 221: 106071, 2023 Dec.
Article En | MEDLINE | ID: mdl-37984160

To assess pastoralists' and agropastoralists' knowledge on Rift Valley fever (RVF), participatory epidemiological studies were conducted with 215 livestock keepers and 27 key informants in Napak, Butebo, Isingiro and Lyantonde districts, Uganda, between January and February 2022. Livestock keepers in all four districts had knowledge of RVF and even had local names or descriptions for it. Pastoralists and agropastoralists possessed valuable knowledge of RVF clinical descriptions and epidemiological risk factors such as the presence of infected mosquitoes, living in flood-prone areas, and excessive rainfall. RVF was ranked among the top ten most important cattle diseases. Pastoralists called RVF Lonyang, symbolizing a disease associated with jaundice, high fever, abortions in pregnant cows, and sudden death in calves. Key informants identified infected domestic animals, the presence of infected mosquitoes, livestock movement and trade, and infected wild animals as risk pathways for the introduction of RVF into an area. Drinking raw blood and milk was perceived as the most likely pathway for human exposure to RVF virus; while the highest consequence was high treatment costs. The results indicate that pastoralists provided key epidemiological information that could be essential for designing an effective national RVF surveillance and early warning system.


Culicidae , Rift Valley Fever , Rift Valley fever virus , Pregnancy , Female , Animals , Cattle , Humans , Rift Valley Fever/epidemiology , Uganda/epidemiology , Animals, Domestic , Risk Factors , Livestock
13.
PLoS Negl Trop Dis ; 17(10): e0011203, 2023 10.
Article En | MEDLINE | ID: mdl-37782665

Usutu virus (USUV) is a mosquito-borne flavivirus that is widely distributed in southern and central Europe. The zoonotic virus circulates primarily between birds and mosquitoes, can, however, in rare cases infect other mammals including humans. In the past, USUV has been repeatedly associated with mass mortalities in birds, primarily blackbirds and owls. Birds commonly succumb either due to the peracute nature of the infection or due to severe encephalitis. In Germany, USUV has spread rapidly since its first detection in 2010 in mosquitoes under the presence of susceptible host and vector species. Nonetheless, there is to date limited access to whole genome sequences resulting in the absence of in-depth phylogenetic and phylodynamic analyses. In this study, 118 wild and captive birds were sequenced using a nanopore sequencing platform with prior target enrichment via amplicons. Due to the high abundancy of Europe 3 and Africa 3 in Germany an ample quantity of associated whole genome sequences was generated and the most recent common ancestor could be determined for each lineage. The corresponding clock phylogeny revealed an introduction of USUV Europe 3 and Africa 3 into Germany three years prior to their first isolation in the avifauna in 2011 and 2014, respectively. Based on the clustering and temporal history of the lineages, evidence exists for the genetic evolution of USUV within Germany as well as new introductions thereof into the country.


Culicidae , Flavivirus Infections , Flavivirus , Animals , Humans , Flavivirus Infections/epidemiology , Flavivirus Infections/veterinary , Phylogeny , Mosquito Vectors , Germany , Birds , Evolution, Molecular , Mammals
14.
Virol J ; 20(1): 234, 2023 10 13.
Article En | MEDLINE | ID: mdl-37833787

The mosquito-borne flaviviruses West Nile virus (WNV) and Usutu virus (USUV) pose a significant threat to the health of humans and animals. Both viruses co-circulate in numerous European countries including Germany. Due to their overlapping host and vector ranges, there is a high risk of co-infections. However, it is largely unknown if WNV and USUV interact and how this might influence their epidemiology. Therefore, in-vitro infection experiments in mammalian (Vero B4), goose (GN-R) and mosquito cell lines (C6/36, CT) were performed to investigate potential effects of co-infections in vectors and vertebrate hosts. The growth kinetics of German and other European WNV and USUV strains were determined and compared. Subsequently, simultaneous co-infections were performed with selected WNV and USUV strains. The results show that the growth of USUV was suppressed by WNV in all cell lines. This effect was independent of the virus lineage but depended on the set WNV titre. The replication of WNV also decreased in co-infection scenarios on vertebrate cells. Overall, co-infections might lead to a decreased growth of USUV in mosquitoes and of both viruses in vertebrate hosts. These interactions can strongly affect the epidemiology of USUV and WNV in areas where they co-circulate.


Coinfection , Culicidae , Flavivirus Infections , Flavivirus , West Nile Fever , West Nile virus , Animals , Humans , Coinfection/veterinary , West Nile Fever/epidemiology , West Nile Fever/veterinary , Flavivirus Infections/epidemiology , Flavivirus Infections/veterinary , Birds , Mosquito Vectors , Mammals
15.
J Clin Microbiol ; 61(11): e0037323, 2023 11 21.
Article En | MEDLINE | ID: mdl-37823649

The consumption of raw or undercooked meat products poses a serious risk for human hepatitis E virus (HEV) infections. In many high-income countries, domestic pigs and wild boars represent the main animal reservoirs for HEV and are usually identified by reverse transcription-PCR and antibody enzyme-linked immunosorbent assay (ELISA). In order to characterize the humoral immune response in more detail, a cell culture-based serum neutralization assay using a culture-adapted HEV strain was established here. Measurement of neutralizing antibodies was only possible after removing the viral quasi-envelope by detergent treatment. Serum samples of 343 wild boars from Northern Germany were first analyzed for anti-HEV IgG using an in-house ELISA, resulting in 19% positive samples. Subsequently, a subset of 41 representative samples was tested with the neutralization assay, and the results correlated well with those obtained by ELISA. Not only the human HEV strain 47832c but also two porcine HEV strains were shown to be neutralized by porcine serum antibodies. Neutralizing activity was also found in samples containing both HEV-specific antibodies and HEV RNA. Testing of serum samples derived from two experimentally infected domestic pigs showed a steep increase in neutralizing activity at 24 or 51 days post infection, dependent on the used infectious dose. The developed assay can be useful for characterization of the humoral immune response after HEV infection and for assessing the efficiency of HEV vaccine candidates.


Hepatitis E virus , Hepatitis E , Swine Diseases , Swine , Animals , Humans , Hepatitis E virus/genetics , Sus scrofa/genetics , Hepatitis Antibodies , Enzyme-Linked Immunosorbent Assay , RNA, Viral
16.
J Gen Virol ; 104(9)2023 09.
Article En | MEDLINE | ID: mdl-37702592

The family Phenuiviridae comprises viruses with 2-8 segments of negative-sense or ambisense RNA, comprising 8.1-25.1 kb in total. Virions are typically enveloped with spherical or pleomorphic morphology but can also be non-enveloped filaments. Phenuivirids infect animals including livestock and humans, birds, plants or fungi, as well as arthropods that serve as single hosts or act as biological vectors for transmission to animals or plants. Phenuivirids include important pathogens of humans, livestock, seafood and agricultural crops. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Phenuiviridae, which is available at ictv.global/report/phenuiviridae.


Arthropods , RNA Viruses , Animals , Humans , RNA Viruses/genetics , Virion , RNA
17.
Pathogens ; 12(7)2023 Jul 20.
Article En | MEDLINE | ID: mdl-37513806

Usutu virus (USUV) and West Nile virus (WNV) are closely related pathogens circulating between mosquitoes and birds, but also infecting mammals as dead-end hosts. Both viruses share the same susceptible hosts, vectors, and even distribution areas in Central Europe. The aim of the study was, therefore, to understand their amplification potential and interference upon a successive infection. Two-week old geese were initially infected with an USUV isolate from Germany and with a German WNV isolate17 days later. The geese were susceptible to the USUV and the WNV infections, as evidenced by specific flavivirus antibodies in all of the birds. Furthermore, in half of the USUV-inoculated geese, USUV genomes were detected in the blood and swab samples 2-4 days post-infection. Additionally, most of the examined organs contained USUV genomes and showed signs of encephalitis and ganglioneuritis. Interestingly, upon a sequential infection with WNV, the genome copy numbers in all of the examined samples were significantly lower and less frequent than after a WNV mono-infection. Similarly, the histopathological lesions were less severe. Therefore, it can be concluded that a previous USUV infection can protect birds from clinical disease in a subsequent WNV infection.

18.
Viruses ; 15(7)2023 06 27.
Article En | MEDLINE | ID: mdl-37515142

The use of wild animals in research is complicated due to the capture and housing conditions, as well as to legal aspects, making it difficult to develop in vivo and in vitro models for the study of pathologies that affect these species. Here we validate an in vitro model of tendon-derived mesenchymal cells (TDSC) from Eurasian blackbird (Turdus merula) cadaveric samples. Through the expression of surface markers and the ability to differentiate into multiple lineages, the nature of the cells was confirmed. We then evaluated Mesenchymal Stem Cells (MSCs) as an infection model for the Usutu Flavivirus. To this aim, blackbird TDSCs were compared to Vero E6 cells, commonly used in Flavivirus studies. Both cells showed permissiveness to USUV infection as confirmed by immunocytochemistry. Moreover, TDSCs exhibited replication kinetics similar to, although slightly lower than, Vero E6, confirming these cells as a pertinent study model for the study of the pathogenesis of USUV. In this work, we isolated and characterized tendon-derived mesenchymal stem cells, which represent an interesting and convenient in vitro model for the study of wildlife species in laboratories.


Flavivirus Infections , Flavivirus , Animals , Animals, Wild , Birds
19.
Emerg Microbes Infect ; 12(2): 2231561, 2023 Dec.
Article En | MEDLINE | ID: mdl-37381816

Three avian viral pathogens circulate in Germany with particular importance for animal disease surveillance due to their zoonotic potential, their impact on wild bird populations and/or poultry farms: Highly pathogenic (HP) avian influenza virus (AIV) of subtype H5 (HPAIV H5), Usutu virus (USUV), and West Nile virus (WNV). Whereas HPAIV H5 has been mainly related to epizootic outbreaks in winter, the arthropod-borne viruses USUV and WNV have been detected more frequently during summer months corresponding to peak mosquito activity. Since 2021, tendencies of a potentially year-round, i.e. enzootic, status of HPAIV in Germany have raised concerns that Orthomyxoviruses (AIV) and Flaviviruses (USUV, WNV) may not only circulate in the same region, but also at the same time and in the same avian host range. In search of a host species group suitable for a combined surveillance approach for all mentioned pathogens, we retrospectively screened and summarized case reports, mainly provided by the respective German National Reference Laboratories (NRLs) from 2006 to 2021. Our dataset revealed an overlap of reported infections among nine avian genera. We identified raptors as a particularly affected host group, as the genera Accipiter, Bubo, Buteo, Falco, and Strix represented five of the nine genera, and highlighted their role in passive surveillance. This study may provide a basis for broader, pan-European studies that could deepen our understanding of reservoir and vector species, as HPAIV, USUV, and WNV are expected to further become established and/or spread in Europe in the future and thus improved surveillance measures are of high importance.


Flavivirus , Influenza in Birds , Orthomyxoviridae , West Nile Fever , West Nile virus , Animals , Retrospective Studies , Mosquito Vectors , Flavivirus/genetics , Birds , Influenza in Birds/epidemiology
20.
Pathogens ; 12(6)2023 May 23.
Article En | MEDLINE | ID: mdl-37375443

Usutu virus (USUV) and West Nile virus (WNV) are known to cause diseases and mortalities in bird populations. Since 2010/2011, USUV has circulated in Germany and spread nationwide, while WNV was only introduced into East Germany in 2018. The zoological garden investigated is located in Northern Germany, where USUV infections in wild birds have been detected for several years. In this longitudinal study conducted over a four-year period, zoo birds were sampled biannually and screened for molecular and serological evidence of USUV and WNV. USUV genomes were detected in eight of the sampled birds and whole-genome sequences revealed the circulation of USUV lineages Europe 3 and Africa 3. Of the eight birds infected with USUV during the study period, four died after the infection, while four survived without displaying clinical signs. Furthermore, in a few of the birds, a USUV (re-)infection was confirmed on a serological level with three birds producing USUV-neutralizing antibodies (nAbs) over a period of four years. Nonetheless, in two birds sampled throughout this longitudinal study, neither a USUV nor a WNV infection was evident. In 2022, WNV nAbs were detected for the first time in a juvenile zoo bird, indicating the introduction of the virus into this region.

...