Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 340: 139761, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37558001

RESUMEN

BTEX (benzene, toluene, ethylbenzene, xylene) are common pollutants often found in former gasworks sites together with some other contaminants like indene, indane and naphthalene (Ie, Ia, N). This study aimed to evaluate the inhibitory or stimulative substrate interactions between BTEX, and Ie, Ia, N during aerobic biodegradation. For this, batch bottles, containing originally anaerobic subsurface sediments, groundwater and indigenous microorganisms from a contaminated former gasworks site, were spiked with various substrate combinations (BTEX, BTEXIe, BTEXIa, BTEXN, BTEXIeIa, BTEXIeN, BTEXIaN, BTEXIeIaN). Subsequently concentrations were monitored over time. For the BTEXIeIaN mixture, initial concentrations were between 1 and 5 mg L-1, and all compounds were completely degraded by the microbial consortia within 39 days of incubation. The experimental data were fitted to a first order kinetic degradation model for interpretation of inhibition/stimulation between the compounds. Results showed that indene, indane, and naphthalene inhibited the degradation of benzene, toluene, ethylbenzene, o-xylene, with benzene being the most affected. M/p-xylene is the only compound whose biodegradation is stimulated by the presence of indene and indane (individually or mixed) but inhibited by the presence of naphthalene. 16S rRNA amplicon sequencing revealed differentiation in the microbial communities within the batches with different substrate mixtures, especially within the two microbial groups Micrococcaceae and Commamonaceae. Indene had more effect on the BTEX microbial community than indane or naphthalene and the presence of indene increased the relative abundance of Micrococcaceae family. In conclusion, co-presence of various pollutants leads to differentiation in degradation processes as well as in microbial community development. This sheds some light on the underlying reasons for that organic compounds present in mixtures in the subsurface of former gasworks sites are either recalcitrant or subjective towards biodegradation, and this understanding helps to further improve the bioremediation of such sites.


Asunto(s)
Contaminantes Ambientales , Indenos , Microbiota , Benceno/química , Biodegradación Ambiental , Cinética , ARN Ribosómico 16S/genética , Derivados del Benceno/química , Xilenos/metabolismo , Tolueno/química , Naftalenos
2.
Anal Methods ; 13(13): 1635-1642, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33861254

RESUMEN

Industrial discharges resulting in contaminated groundwater is a global environmental problem. For such contaminated groundwater cases, bioremediation is a cost efficient and environmentally friendly approach. The determination and quantification of these pollutants has gained great importance and researchers are currently seeking to develop labor extensive, accurate and reliable methods for evaluating their biodegradation process. In this study, a HPLC method was developed and optimized for the quantification of 11 industrial pollutants studied as two different mixtures: benzene, toluene, ethylbenzene, o, m/p-xylene, indane, indene, and naphthalene (mixture A) and benzene, monochlorobenzene, 1,2-dichlorobenzene, and 1,4-dichlorobenzene (mixture B). The method uses two different detectors: fluorescence detection and diode array. The fluorescence detector was used for mixture A to achieve lower quantification limits and to quantify separately o-xylene and indene due to them showing similar wavelength behaviors. The limit of detection was found to be between 2 and 70 µg L-1 for mixture A and 290 µg L-1 for mixture B. The limit of quantitation was between 6 and 210 µg L-1 for mixture A and 980 µg L-1 for mixture B, respectively. The novel part of this study is that aqueous samples can be directly measured with one-step sample preparation and it comes with other advantages such as low volumes of sampling from batch bottles and also avoidance of high cost, relative to other analytical techniques. Therefore, this analytical method aims to facilitate the quantification of various aromatic hydrocarbons in laboratory batch samples and can be used as a routine monitoring tool for biological degradation processes of these 11 prevalent contaminants.


Asunto(s)
Contaminantes Ambientales , Benceno , Biodegradación Ambiental , Cromatografía Líquida de Alta Presión , Tolueno
3.
Chemosphere ; 266: 128984, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33234305

RESUMEN

DNA-stable isotope probing (SIP) with 13C labeled phenanthrene (PHE) as substrate was used to identify specific bacterial degraders during natural attenuation (NA) and bioaugmentation (BA) in petroleum contaminated soil. BA, with the addition of a bacterial suspension mixture named GZ, played a significant role in PHE degradation with a higher PHE removal rate (∼90%) than that of NA (∼80%) during the first 3 days, and remarkably altered microbial communities. Of the five strains introduced in BA, only two genera, particularly, Ochrobactrum, Rhodococcus were extensively responsible for PHE-degradation. Six (Bacillus sp., Acinetobacter sp., Xanthomonas sp., Conexibacter sp., Acinetobacter sp. and Staphylococcus sp.) and seven (Ochrobactrum sp., Rhodococcus sp., Alkanindiges sp., Williamsia sp., Sphingobium sp., Gillisia sp. and Massilia sp.) bacteria responsible for PHE degradation were identified in NA and BA treatments, respectively. This study reports for the first time the association of Xanthomonas sp., Williamsia sp., and Gillisia sp. to PHE degradation.


Asunto(s)
Petróleo , Fenantrenos , Contaminantes del Suelo , Biodegradación Ambiental , ADN , Isótopos , Fenantrenos/análisis , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis
4.
Environ Sci Technol ; 54(5): 3039-3049, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32022549

RESUMEN

Due to the increasing need for sustainable energy and environmental quality in urban areas, the combination of aquifer thermal energy storage (ATES) and in situ bioremediation (ISB) has drawn much attention as it can deliver an integrated contribution to fulfill both demands. Yet, little is known about the overall environmental impacts of ATES-ISB. Hence, we applied a life-cycle assessment (LCA) to evaluate the environmental performance of ATES-ISB, which is also compared with the conventional heating and cooling system plus ISB alone (CHC + ISB). Energy supply via electricity is revealed as the primary cause of the environmental impacts, contributing 61.26% impacts of ATES-ISB and 72.91% impacts of CHC + ISB. Specifically, electricity is responsible for over 95% of water use, global warming potential, acidification potential, and respiratory inorganics, whereas the production of the biological medium for bioremediation causes more than 85% of the eco- and human toxicity impacts in both cases. The overall environmental impact of ATES-ISB is two times smaller than that of CHC + ISB. Sensitivity analysis confirms the importance of electricity consumption and electron donor production to the environmental impacts in both energy supply and bioremediation. Thus, future studies and practical applications seeking possible optimization of the environmental performances of ATES-ISB are recommended to focus more on these two essential elements, e.g., electricity and electron donor, and their related parameters. With the comprehensive LCA, insight is obtained for better characterizing the crucial factors as well as the relevant direction for future optimization research of the ATES-ISB system.


Asunto(s)
Agua Subterránea , Compuestos Orgánicos Volátiles , Biodegradación Ambiental , Electricidad , Calor , Humanos
5.
Sci Total Environ ; 677: 263-271, 2019 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-31055105

RESUMEN

The combination of bioremediation and aquifer thermal energy storage (ATES) has become attractive because of the possibility of solving environmental and energy problems simultaneously. While the impact of ATES on groundwater quality due to temperature change has received ample attention in literature, the effect of the greatly enhanced groundwater flow velocity on groundwater quality has not yet received sufficient scientific attention. To fill this gap in understanding, we conducted a simple yet straightforward experiment to illustrate the impact of hydrodynamic shear force due to the water flow by ATES on the release of dissolved organic matter, which can potentially be advantageous to bioremediation. Vigorous shaking conditions were applied to simulate the enhanced dynamics at the ATES well center and nearby. As the indicators of dissolved organic matter, COD and TOC concentrations were significantly impacted by shaking. COD increased from 5.4 mgO2/L to 36.3 mgO2/L during horizontal shaking. The maximum COD level was determined as 33.8 mgO2/L during orbital shaking, while the TOC level was growing from 6.7 to 28.7 mg C/L. Meanwhile, redox potential (with initial level -100 mV) was decreasing to -450 mV synchronously with the elevating COD and TOC level. Temperature was also revealed as a significant factor in the organic matter releasement. Microbial iron reduction was deemed to occur, yet sulfate reduction was not initiated during the whole experiment. Eventually, the structure of the soil-water matrix has been changed due to the extensive hydraulic and particle collisions, resulting in blackish appearance and thicker layer of fine particles. Overall, the findings advance our understanding of the role of the ATES-induced water flow in the subsurface biogeochemistry and give insight into the perspective of the combination of bioremediation and ATES. In general, an increase in dissolved organic matter can be expected due to the increased shear force at high flow conditions in the ATES system.

6.
Sci Total Environ ; 613-614: 707-713, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28938213

RESUMEN

Interest in the combination concept of aquifer thermal energy storage (ATES) and enhanced bioremediation has recently risen due to the demand for both renewable energy technology and sustainable groundwater management in urban areas. However, the impact of enhanced bioremediation on ATES is not yet clear. Of main concern is the potential for biological clogging which might be enhanced and hamper the proper functioning of ATES. On the other hand, more reduced conditions in the subsurface by enhanced bioremediation might lower the chance of chemical clogging, which is normally caused by Fe(III) precipitate. To investigate the possible effects of enhanced bioremediation on clogging with ATES, we conducted two recirculating column experiments with differing flow rates (10 and 50mL/min), where enhanced biological activity and chemically promoted Fe(III) precipitation were studied by addition of lactate and nitrate respectively. The pressure drop between the influent and effluent side of the column was used as a measure of the (change in) hydraulic conductivity, as indication of clogging in these model ATES systems. The results showed no increase in upstream pressure during the period of enhanced biological activity (after lactate addition) under both flow rates, while the addition of nitrate lead to significant buildup of the pressure drop. However, at the flow rate of 10mL/min, high pressure buildup caused by nitrate addition could be alleviated by lactate addition. This indicates that the risk of biological clogging is relatively small in the investigated areas of the mimicked ATES system that combines enhanced bioremediation with lactate as substrate, and furthermore that lactate may counter chemical clogging.

7.
Appl Microbiol Biotechnol ; 100(8): 3767-80, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26711280

RESUMEN

To meet the demand for sustainable energy, aquifer thermal energy storage (ATES) is widely used in the subsurface in urban areas. However, contamination of groundwater, especially with chlorinated volatile organic compounds (CVOCs), is often being encountered. This is commonly seen as an impediment to ATES implementation, although more recently, combining ATES and enhanced bioremediation of CVOCs has been proposed. Issues to be addressed are the high water flow velocities and potential periodic redox fluctuation that accompany ATES. A column study was performed, at a high water flow velocity of 2 m/h, simulating possible changes in subsurface redox conditions due to ATES operation by serial additions of lactate and nitrate. The impacts of redox changes on reductive dechlorination as well as the microbial response of Dehalococcoides (DHC) were evaluated. The results showed that, upon lactate addition, reductive dechlorination proceeded well and complete dechlorination from cis-DCE to ethene was achieved. Upon subsequent nitrate addition, reductive dechlorination immediately ceased. Disruption of microorganisms' retention was also immediate and possibly detached DHC which preferred attaching to the soil matrix under biostimulation conditions. Initially, recovery of dechlorination was possible but required bioaugmentation and nutrient amendment in addition to lactate dosing. Repeated interruption of dechlorination and DHC activity by nitrate dosing appeared to be less easily reversible requiring more efforts for regenerating dechlorination. Overall, our results indicate that the microbial resilience of DHC in biosimulated ATES conditions is sensitive to redox fluctuations. Hence, combining ATES with bioremediation requires dedicated operation and monitoring on the aquifer geochemical conditions.


Asunto(s)
Chloroflexi/metabolismo , Agua Subterránea/química , Compuestos Orgánicos Volátiles/química , Biodegradación Ambiental , Agua Subterránea/microbiología , Halogenación , Oxidación-Reducción , Compuestos Orgánicos Volátiles/metabolismo , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo
8.
Environ Sci Technol ; 49(22): 13519-27, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26503690

RESUMEN

Underground thermal energy storage (UTES) use has showed a sharp rise in numbers in the last decades, with aquifer thermal energy storage (ATES) and borehole thermal energy storage (BTES) most widely used. In many urban areas with contaminated aquifers, there exists a desire for sustainable heating and cooling with UTES and a need for remediation. We investigated the potential synergy between UTES and bioremediation with batch experiments to simulate the effects of changing temperature and liquid exchange that occur in ATES systems, and of only temperature change occurring in BTES systems on cis-DCE reductive dechlorination. Compared to the natural situation (NS) at a constant temperature of 10 °C, both UTES systems with 25/5 °C for warm and cold well performed significantly better in cis-DCE (cis-1,2-dichloroethene) removal. The overall removal efficiency under mimicked ATES and BTES conditions were respectively 13 and 8.6 times higher than in NS. Inoculation with Dehalococcoides revealed that their initial presence is a determining factor for the dechlorination process. Temperature was the dominating factor when Dehalococcoides abundance was sufficient. Stimulated biodegradation was shown to be most effective in the mimicked ATES warm well because of the combined effect of suitable temperature, sustaining biomass growth, and regular cis-DCE supply.


Asunto(s)
Chloroflexi/metabolismo , Dicloroetilenos/metabolismo , Fuentes Generadoras de Energía , Biodegradación Ambiental , Dicloroetilenos/química , Agua Subterránea , Halogenación , Calor , Estereoisomerismo , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo
9.
PLoS One ; 10(8): e0134615, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26244346

RESUMEN

While in situ chemical oxidation is often used to remediate tetrachloroethene (PCE) contaminated locations, very little is known about its influence on microbial composition and organohalide respiration (OHR) activity. Here, we investigate the impact of oxidation with permanganate on OHR rates, the abundance of organohalide respiring bacteria (OHRB) and reductive dehalogenase (rdh) genes using quantitative PCR, and microbial community composition through sequencing of 16S rRNA genes. A PCE degrading enrichment was repeatedly treated with low (25 µmol), medium (50 µmol), or high (100 µmol) permanganate doses, or no oxidant treatment (biotic control). Low and medium treatments led to higher OHR rates and enrichment of several OHRB and rdh genes, as compared to the biotic control. Improved degradation rates can be attributed to enrichment of (1) OHRB able to also utilize Mn oxides as a terminal electron acceptor and (2) non-dechlorinating community members of the Clostridiales and Deltaproteobacteria possibly supporting OHRB by providing essential co-factors. In contrast, high permanganate treatment disrupted dechlorination beyond cis-dichloroethene and caused at least a 2-4 orders of magnitude reduction in the abundance of all measured OHRB and rdh genes, as compared to the biotic control. High permanganate treatments resulted in a notably divergent microbial community, with increased abundances of organisms affiliated with Campylobacterales and Oceanospirillales capable of dissimilatory Mn reduction, and decreased abundance of presumed supporters of OHRB. Although OTUs classified within the OHR-supportive order Clostridiales and OHRB increased in abundance over the course of 213 days following the final 100 µmol permanganate treatment, only limited regeneration of PCE dechlorination was observed in one of three microcosms, suggesting strong chemical oxidation treatments can irreversibly disrupt OHR. Overall, this detailed investigation into dose-dependent changes of microbial composition and activity due to permanganate treatment provides insight into the mechanisms of OHR stimulation or disruption upon chemical oxidation.


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Regulación Bacteriana de la Expresión Génica , Compuestos de Manganeso/metabolismo , Óxidos/metabolismo , Bacterias/enzimología , Biodegradación Ambiental , Respiración de la Célula , Halogenación , Oxidación-Reducción , Oxidorreductasas/genética , Filogenia , ARN Ribosómico 16S/genética , Tetracloroetileno/metabolismo , Contaminantes Químicos del Agua/metabolismo
10.
J Hazard Mater ; 300: 135-143, 2015 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-26177489

RESUMEN

Coupling chemical oxidation with bioremediation could be a cost-effective system to cope with soil and groundwater pollution. However, the effects of chemical oxidation on autochthonous microbial communities are scarcely known. A detailed analysis that considers both the efficiency of the two technologies and the response of the microbial communities was performed on a linear alkylbenzene-polluted soil and groundwater samples. The impacts of a modified Fenton's reaction (MFR) at various dosages and of permanganate on the microbiota over 4 weeks were assessed. The permanganate and MFR negatively affected microbial abundance and activity. However, the resilience of certain microbial populations was observed, with a final increase in potential hydrocarbon-degrading populations as determined by both the alkB gene abundance and the predominance of well-known hydrocarbon-degrading phylotypes such as Rhodococcus, Ochrobactrum, Acinetobacter and Cupriavidus genera as determined by 16S rRNA-based DGGE fingerprinting. The assessment of the chemical oxidant impact on autochthonous microbiota should be considered for the optimization of coupled field remediation technologies.


Asunto(s)
Derivados del Benceno/química , Derivados del Benceno/metabolismo , Contaminantes del Suelo/química , Contaminantes del Suelo/metabolismo , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo , Bacterias/genética , Bacterias/metabolismo , Biodegradación Ambiental , Dióxido de Carbono/metabolismo , ADN Bacteriano/genética , Peróxido de Hidrógeno/química , Hierro/química , Oxidación-Reducción , Oxígeno/metabolismo , Permanganato de Potasio/química , ARN Ribosómico 16S/genética , Microbiología del Suelo , Microbiología del Agua
11.
Integr Environ Assess Manag ; 11(2): 221-34, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25641867

RESUMEN

Contaminated sediments can pose serious threats to human health and the environment by acting as a source of toxic chemicals. The amendment of contaminated sediments with strong sorbents like activated C (AC) is a rapidly developing strategy to manage contaminated sediments. To date, a great deal of attention has been paid to the technical and ecological features and implications of sediment remediation with AC, although science in this field still is rapidly evolving. This article aims to provide an update on the recent literature on these features, and provides a comparison of sediment remediation with AC to other sediment management options, emphasizing their full-scale application. First, a qualitative overview of advantages of current alternatives to remediate contaminated sediments is presented. Subsequently, AC treatment technology is critically reviewed, including current understanding of the effectiveness and ecological safety for the use of AC in natural systems. Finally, this information is used to provide a novel framework for supporting decisions concerning sediment remediation and beneficial reuse.


Asunto(s)
Carbón Orgánico/química , Restauración y Remediación Ambiental , Sedimentos Geológicos/química
12.
Ground Water ; 53(2): 261-70, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-24898385

RESUMEN

In situ chemical oxidation (ISCO) followed by a bioremediation step is increasingly being considered as an effective biphasic technology. Information on the impact of chemical oxidants on organohalide respiring bacteria (OHRB), however, is largely lacking. Therefore, we used quantitative PCR (qPCR) to monitor the abundance of OHRB (Dehalococcoides mccartyi, Dehalobacter, Geobacter, and Desulfitobacterium) and reductive dehalogenase genes (rdh; tceA, vcrA, and bvcA) at a field location contaminated with chlorinated solvents prior to and following treatment with sodium persulfate. Natural attenuation of the contaminants tetrachloroethene (PCE) and trichloroethene (TCE) observed prior to ISCO was confirmed by the distribution of OHRB and rdh genes. In wells impacted by persulfate treatment, a 1 to 3 order of magnitude reduction in the abundances of OHRB and complete absence of rdh genes was observed 21 days after ISCO. Groundwater acidification (pH<3) and increase in the oxidation reduction potential (>500 mV) due to persulfate treatment were significant and contributed to disruption of the microbial community. In wells only mildly impacted by persulfate, a slight stimulation of the microbial community was observed, with more than 1 order of magnitude increase in the abundance of Geobacter and Desulfitobacterium 36 days after ISCO. After six months, regeneration of the OHRB community occurred, however, neither D. mccartyi nor any rdh genes were observed, indicating extended disruption of biological natural attenuation (NA) capacity following persulfate treatment. For full restoration of biological NA activity, additional time may prove sufficient; otherwise addition electron donor amendment or bioaugmentation may be required.


Asunto(s)
Chloroflexi/metabolismo , Geobacter/metabolismo , Agua Subterránea , Oxidorreductasas/metabolismo , Peptococcaceae/metabolismo , Tetracloroetileno/química , Tricloroetileno/química , Biodegradación Ambiental , Chloroflexi/genética , Desulfitobacterium/genética , Desulfitobacterium/metabolismo , Genes Bacterianos , Geobacter/genética , Concentración de Iones de Hidrógeno , Oxidorreductasas/genética , Peptococcaceae/genética , Reacción en Cadena de la Polimerasa , Compuestos de Sodio/química , Solventes , Sulfatos/química
13.
Water Res ; 67: 96-104, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25262554

RESUMEN

Addition of activated carbons (AC) to polluted sediments and soils is an attractive remediation technique aiming at reducing pore water concentrations of hydrophobic organic contaminants (HOCs). In this study, we present (pseudo-)equilibrium as well as kinetic parameters for sorption of a series of PAHs and PCBs to powdered and granular activated carbons (AC) after three different sediment treatments: sediment mixed with powdered AC (PAC), sediment mixed with granular AC (GAC), and addition of GAC followed by 2 d mixing and subsequent removal ('sediment stripping'). Remediation efficiency was assessed by quantifying fluxes of PAHs towards SPME passive samplers inserted in the sediment top layer, which showed that the efficiency decreased in the order of PAC > GAC stripping > GAC addition. Sorption was very strong to PAC, with Log KAC (L/kg) values up to 10.5. Log KAC values for GAC ranged from 6.3-7.1 and 4.8-6.2 for PAHs and PCBs, respectively. Log KAC values for GAC in the stripped sediment were 7.4-8.6 and 5.8-7.7 for PAH and PCB. Apparent first order adsorption rate constants for GAC (kGAC) in the stripping scenario were calculated with a first-order kinetic model and ranged from 1.6 × 10(-2) (PHE) to 1.7 × 10(-5) d(-1) (InP). Sorption affinity parameters did not change within 9 months post treatment, confirming the longer term effectiveness of AC in field applications for PAC and GAC.


Asunto(s)
Carbón Orgánico/química , Restauración y Remediación Ambiental/métodos , Sedimentos Geológicos/química , Modelos Químicos , Hidrocarburos Policíclicos Aromáticos/química , Contaminantes del Suelo/química , Adsorción , Cinética
14.
J Contam Hydrol ; 164: 209-18, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24995946

RESUMEN

Reductive dechlorination of tetrachloroethene (PCE) and its daughter products in aquifers is often hampered by Fe(III) reducing conditions. Rigorous treatment to adjust the redox potential and stimulate dechlorination may be costly and potentially have negative effects on other aquifer functions. A step-wise experimental strategy was applied to investigate the effectiveness of various adjustment scenarios. Batch experiments with ascorbic acid (AA) and sodium lactate (SL) showed that 75µmol electron equivalents per gram dry mass of aquifer material was required to reach a sufficiently low redox potential for the onset of PCE dechlorination. Similar effects of either AA or SL on the measured redox potential suggest electron donors are not specific. However, the relative rates of Fe(III) and sulphate reduction appeared to be specific to the electron donor applied. While redox potential stabilised around -450mV after titration and sulphate was reduced to zero in both treatments, in the AA treatment a faster production of Fe(2+) was observed with a final concentration of 0.46mM compared to only 0.07mM in the SL treatment. In subsequent batch experiments with aquifer material that was pre-treated with AA or SL, PCE reductive dechlorination occurred within 30days. Further stimulation tests with extra electron donor or inoculum revealed that adding electron donor can accelerate the initiation of PCE biodegradation. However, bioaugmentation with dechlorinating bacteria is required to achieve complete reductive dechlorination to ethene. The findings from step-wise approaches are relevant for improving the cost-effectiveness of the design and operation of in-situ bioremediation at initially unfavourable environmental conditions.


Asunto(s)
Bacterias/metabolismo , Compuestos Férricos/química , Agua Subterránea/química , Tetracloroetileno/química , Contaminantes Químicos del Agua/química , Biodegradación Ambiental , Electrones , Halogenación , Oxidación-Reducción
15.
Sci Total Environ ; 485-486: 820-827, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24485908

RESUMEN

Jinpen Reservoir is a deep, stratified reservoir in Shaanxi province, located in a warm temperate zone of Northwest China. Influenced by a temperate monsoon climate, more than 60% of the annual precipitation is concentrated from late summer to autumn (July-September). In recent years, extreme rainfall events occurred more frequently and strongly affected the thermal structure, mixing layer depth and evolution of stratification of Jinpen Reservoir. The reservoir's inflow volume increased sharply after heavy rainfall during the flooding season. Large volumes of inflow induced mixing of stratified water zones in early autumn and disturbed the stratification significantly. A temporary positive effect of such disturbance was the oxygenation of the water close to the bottom of the reservoir, leading to inhibition of the release of nutrients from sediments, especially phosphate. However, the massive inflow induced by storm runoff with increased oxygen-consuming substances led to an increase of the oxygen consumption rate. After the bottom water became anaerobic again, the bottom water quality would deteriorate due to the release of pollutants from sediments. Heavy rainfall events could lead to very high nutrient input into the reservoir due to massive erosion from the surrounding uninhabited steep mountains, and the particulate matter contributed to most nutrient inputs. Reasonably releasing density flow is an effective way to reduce the amounts of particulate associated pollutants entering the reservoir. Significant turbid density flow always followed high rainfall events in Jinpen Reservoir, which not only affected the reservoir water quality but also increased costs of the drinking water treatment plant. Understanding the effects of the storm runoff on the vertical distributions of water quality indicators could help water managers to select the proper position of the intake for the water plant in order to avoid high turbidity outflow.


Asunto(s)
Monitoreo del Ambiente , Contaminantes del Agua/análisis , Abastecimiento de Agua/estadística & datos numéricos , China , Clima , Lluvia , Estaciones del Año , Contaminación del Agua/estadística & datos numéricos , Calidad del Agua/normas
16.
Environ Sci Technol ; 48(4): 2352-60, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24450862

RESUMEN

While in situ chemical oxidation with persulfate has seen wide commercial application, investigations into the impacts on groundwater characteristics, microbial communities and soil structure are limited. To better understand the interactions of persulfate with the subsurface and to determine the compatibility with further bioremediation, a pilot scale treatment at a diesel-contaminated location was performed consisting of two persulfate injection events followed by a single nutrient amendment. Groundwater parameters measured throughout the 225 day experiment showed a significant decrease in pH and an increase in dissolved diesel and organic carbon within the treatment area. Molecular analysis of the microbial community size (16S rRNA gene) and alkane degradation capacity (alkB gene) by qPCR indicated a significant, yet temporary impact; while gene copy numbers initially decreased 1-2 orders of magnitude, they returned to baseline levels within 3 months of the first injection for both targets. Analysis of soil samples with sequential extraction showed irreversible oxidation of metal sulfides, thereby changing subsurface mineralogy and potentially mobilizing Fe, Cu, Pb, and Zn. Together, these results give insight into persulfate application in terms of risks and effective coupling with bioremediation.


Asunto(s)
Bacterias/metabolismo , Contaminantes Ambientales/análisis , Contaminación Ambiental/análisis , Gasolina/microbiología , Suelo/química , Bacterias/genética , Biodegradación Ambiental , Carbono/análisis , Conductividad Eléctrica , Agua Subterránea/microbiología , Hidrocarburos/análisis , Concentración de Iones de Hidrógeno , Sistemas en Línea , Oxidantes/química , Oxidación-Reducción , Proyectos Piloto , Polonia , ARN Ribosómico 16S/genética
17.
Chemosphere ; 97: 64-70, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24321334

RESUMEN

Remediation with in situ chemical oxidation (ISCO) impacts soil organic matter (SOM) and the microbial community, with deleterious effects on the latter being a major hurdle to coupling ISCO with in situ bioremediation (ISB). We investigate treatment of a diesel-contaminated soil with Fenton's reagent and modified Fenton's reagent coupled with a subsequent bioremediation phase of 187d, both with and without nutrient amendment. Chemical oxidation mobilized SOM into the liquid phase, producing dissolved organic carbon (DOC) concentrations 8-16 times higher than the untreated field sample. Higher aqueous concentrations of nitrogen and phosphorous species were also observed following oxidation; NH4(+) increased 14-172 times. During the bioremediation phase, dissolved carbon and nutrient species were utilized for microbial growth-yielding DOC concentrations similar to field sample levels within 56d of incubation. In the absence of nutrient amendment, the highest microbial respiration rates were correlated with higher availability of nitrogen and phosphorus species mobilized by oxidation. Significant diesel degradation was only observed following nutrient amendment, implying that nutrients mobilized by chemical oxidation can increase microbial activity but are insufficient for bioremediation. While all bioremediation occurred in the first 28d of incubation in the biotic control microcosm with nutrient amendment, biodegradation continued throughout 187d of incubation following chemical oxidation, suggesting that chemical treatment also affects the desorption of organic contaminants from SOM. Overall, results indicate that biodegradation of DOC, as an alternative substrate to diesel, and biological utilization of mobilized nutrients have implications for the success of coupled ISCO and ISB treatments.


Asunto(s)
Gasolina/análisis , Contaminantes del Suelo/metabolismo , Biodegradación Ambiental , Carbono/análisis , Carbono/metabolismo , Peróxido de Hidrógeno , Hierro , Nitrógeno/metabolismo , Oxidación-Reducción , Contaminación por Petróleo , Fósforo/metabolismo , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis
18.
Appl Microbiol Biotechnol ; 98(6): 2751-64, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24092007

RESUMEN

To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in two diesel-contaminated soils (peat and fill). Chemical oxidant and soil type affected the microbial community diversity and biodegradation activity; however, this was only observed following treatment with Fenton's reagent and modified Fenton's reagent, and in the biotic control without oxidation. Differences in the highest overall removal efficiencies of 69 % for peat (biotic control) and 59 % for fill (Fenton's reagent) were partially explained by changes in contaminant soil properties upon oxidation. Molecular analysis of 16S rRNA and alkane monooxygenase (alkB) gene abundances indicated that oxidation with Fenton's reagent and modified Fenton's reagent negatively affected microbial abundance. However, regeneration occurred, and final relative alkB abundances were 1-2 orders of magnitude higher in chemically treated microcosms than in the biotic control. 16S rRNA gene fragment fingerprinting with DGGE and prominent band sequencing illuminated microbial community composition and diversity differences between treatments and identified a variety of phylotypes within Alpha-, Beta-, and Gammaproteobacteria. Understanding microbial community dynamics during coupled chemical oxidation and bioremediation is integral to improved biphasic field application.


Asunto(s)
Bacterias/clasificación , Biodegradación Ambiental , Biota , Gasolina , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Suelo/química , Bacterias/genética , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Datos de Secuencia Molecular , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
20.
Appl Environ Microbiol ; 79(2): 619-30, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23144139

RESUMEN

Microbial community composition and diversity at a diesel-contaminated railway site were investigated by pyrosequencing of bacterial and archaeal 16S rRNA gene fragments to understand the interrelationships among microbial community composition, pollution level, and soil geochemical and physical properties. To this end, 26 soil samples from four matrix types with various geochemical characteristics and contaminant concentrations were investigated. The presence of diesel contamination significantly impacted microbial community composition and diversity, regardless of the soil matrix type. Clean samples showed higher diversity than contaminated samples (P < 0.001). Bacterial phyla with high relative abundances in all samples included Proteobacteria, Firmicutes, Actinobacteria, Acidobacteria, and Chloroflexi. High relative abundances of Archaea, specifically of the phylum Euryarchaeota, were observed in contaminated samples. Redundancy analysis indicated that increased relative abundances of the phyla Chloroflexi, Firmicutes, and Euryarchaeota correlated with the presence of contamination. Shifts in the chemical composition of diesel constituents across the site and the abundance of specific operational taxonomic units (OTUs; defined using a 97% sequence identity threshold) in contaminated samples together suggest that natural attenuation of contamination has occurred. OTUs with sequence similarity to strictly anaerobic Anaerolineae within the Chloroflexi, as well as to Methanosaeta of the phylum Euryarchaeota, were detected. Anaerolineae and Methanosaeta are known to be associated with anaerobic degradation of oil-related compounds; therefore, their presence suggests that natural attenuation has occurred under anoxic conditions. This research underscores the usefulness of next-generation sequencing techniques both to understand the ecological impact of contamination and to identify potential molecular proxies for detection of natural attenuation.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Biota , Gasolina , Microbiología del Suelo , Contaminantes del Suelo , Archaea/genética , Bacterias/genética , Análisis por Conglomerados , ADN de Archaea/química , ADN de Archaea/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Genes de ARNr , Datos de Secuencia Molecular , Filogenia , ARN de Archaea/genética , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...