Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 92(7): 074501, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34340453

RESUMEN

Novel material thin-film solar cells are promising alternatives to conventional solar cells for future space applications. Previous terrestrial investigations have shown promising stability under simulated space conditions, pioneering the next step to test these solar cells under space conditions. Here, we present the sounding rocket experiment OHSCIS to characterize the electronic behavior of Organic and Hybrid Solar Cells In Space (OHSCIS). The mechanical and electronic design aims at maximizing the rate of data collection and the fail-safety for high scientific output with precise measurements. The maiden flight onboard the MAPHEUS-8 proved the experimental concept to be successful and produced valuable results for the operation and behavior of perovskite and organic solar cells in space.

2.
Sci Rep ; 9(1): 18269, 2019 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-31797983

RESUMEN

Ultrahigh molecular weight (UHMW) diblock copolymers (DBCs) have emerged as a promising template for fabricating large-sized nanostructures. Therefore, it is of high significance to systematically study the influence of film thickness and solvent vapor annealing (SVA) on the structure evolution of UHMW DBC thin films. In this work, spin coating of an asymmetric linear UHMW polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) DBC is used to fabricate thin films, which are spherically structured with an inter-domain distance larger than 150 nm. To enhance the polymer chain mobility and facilitate approaching equilibrium nanostructures, SVA is utilized as a post-treatment of the spin coated films. With increasing film thickness, a local hexagonal packing of PMMA half-spheres on the surface can be obtained, and the order is improved at larger thickness, as determined by grazing incidence small angle X-ray scattering (GISAXS). Additionally, the films with locally hexagonal packed half-spherical morphology show a poor order-order-poor order transition upon SVA, indicating the realization of ordered structure using suitable SVA parameters.

3.
ACS Appl Mater Interfaces ; 11(45): 42313-42321, 2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31644257

RESUMEN

Printing of active layers of high-efficiency organic solar cells and morphology control by processing with varying solvent additive concentrations are important to realize real-world use of bulk-heterojunction photovoltaics as it enables both up-scaling and optimization of the device performance. In this work, active layers of the conjugated polymer with benzodithiophene units PBDB-T-SF and the nonfullerene small molecule acceptor IT-4F are printed using meniscus guided slot-die coating. 1,8-Diiodooctane (DIO) is added to optimize the power conversion efficiency (PCE). The effect on the inner nanostructure and surface morphology of the material is studied for different solvent additive concentrations with grazing incidence small-angle X-ray scattering (GISAXS), grazing incidence wide-angle X-ray scattering (GIWAXS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Optical properties are studied with photoluminescence (PL), UV/vis absorption spectroscopy, and external quantum efficiency (EQE) measurements and correlated to the corresponding PCEs. The addition of 0.25 vol % DIO enhances the average PCE from 3.5 to 7.9%, whereas at higher concentrations the positive effect is less pronounced. A solar cell performance of 8.95% is obtained for the best printed device processed with an optimum solvent additive concentration. Thus, with the large-scale preparation method printing similarly well working solar cells can be realized as with the spin-coating method.

4.
Nanoscale ; 10(11): 5325-5334, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29504621

RESUMEN

The amphiphilic diblock copolymer polystyrene-block-polyethylene oxide is combined with sol-gel chemistry to control the structure formation of blade-coated foam-like titania thin films. The influence of evaporation time before immersion into a poor solvent bath and polarity of the poor solvent bath are studied. Resulting morphological changes are quantified by scanning electron microscopy (SEM) and grazing incidence small angle X-ray scattering (GISAXS) measurements. SEM images surface structures while GISAXS accesses inner film structures. Due to the correlation of evaporation time and mobility of the polymer template during the phase separation process, a decrease in the distances of neighboring titania nanostructures from 50 nm to 22 nm is achieved. Furthermore, through an increase of polarity of an immersion bath the energetic incompatibility of the hydrophobic block and the solvent can be enhanced, leading to an increase of titania nanostructure distances from 35 nm to 55 nm. Thus, a simple approach is presented to control titania nanostructure in foam-like films prepared via blade coating, which enables an easy upscaling of film preparation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...